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How to Use This Guide 

This guide is intended for software 

developers interested in optimizing their 

application’s performance on the Intel® 

Xeon® processor Scalable Family 1st Gen, 

using the Intel® VTune™ Amplifier 

performance profiler. Familiarity with 

Intel® Vtune™ Amplifier or 

expertise/experience in performance 

optimization is not necessary, though 

familiarity with the application being 

optimized is strongly recommended. While 

much of the performance information in 

this guide applies equally to other tools, 

this document focuses on the use of Intel® 

VTune™ Amplifier. 

The recommended usage model for this tuning guide is to read through it once before beginning the tuning process to 

familiarize yourself with the steps, then follow it again, step by step, as you work through optimizing your application. 

You may need to go through the process more than once to fully tune your code. 

Before you begin the optimization process, you should make sure that you have used the appropriate compiler 

optimization flags for the architecture and chosen an appropriate workload for your application. It is also generally 

beneficial to measure the baseline performance of the program before beginning data collection or optimization. 

Additionally, some features present in the Intel® Xeon® processor Scalable Family 1st Gen can have significant effects on 

performance measurement, and make the process of measuring and interpreting performance data more complex. It 

may be beneficial to disable Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0 Technology for the duration 

of the optimization process, including data collection, and then re-enable them when you are done optimizing. Both of 

these features can be enabled and disabled through the BIOS on most platforms. 

WARNING! Incorrectly modifying BIOS settings from those supplied by the manufacturer may render the system 
unusable, and may void the warranty. You should contact the system vendor or manufacturer for specifics before 
making any changes. 

 

About Intel® VTune™ Amplifier 

Intel® VTune™ Amplifier is a versatile performance analysis tool available as a standalone product or as part of suites like 

Intel® Parallel Studio XE (Professional and Cluster Editions only) and Intel® System Studio. It can be run via command 

line, GUI, or integration with Microsoft* Visual Studio*, on Windows* and Linux* operating systems. Data can be viewed 

on macOS* systems as well. VTune™ Amplifier is compatible with multiple languages, including C/C++, Fortran, Java, 

Assembly, Python, and more. 

Intel® VTune™ Amplifier contains several pre-configured analysis types; this guide will focus primarily on the General 

Exploration analysis. No research or familiarity with the hardware events is necessary, as the pre-configured analysis 

types are already set to collect the appropriate hardware events for your microarchitecture. The General Exploration 

Analysis is also pre-programmed with all relevant formulae, and will automatically calculate the appropriate metrics for 

This image represents a generalized CPU layout intended to help illustrate the concepts 
described in this guide. It is not a definitive representation of the microarchitecture. 
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display in the General Exploration viewpoint (which is the default for this analysis type). Other pre-configured profiles 

will display raw data, but still do not require manual input of the desired hardware events. 

 

Most screenshots in this guide were taken in Intel® VTune™ Amplifier 2017 Update 3. They may not necessarily have been taken on the 
microarchitecture this guide is written for. Screenshots taken in different versions of this tool may have minor differences. 

The uOp Pipeline 

The tuning methodology described in this guide relies on the concept of uop pipeline slot categorization. A uop (or more 

properly a μop) is a micro-operation, a low-level instruction such as a single addition, load, or less-than comparison. 

There are several steps in performing this operation – the uop must be fetched, decoded, executed, etc. 

In this simplified example, processing 

an instruction involves five steps, each 

of which takes one cycle. Without 

pipelining, the red instruction must be 

completely processed before beginning 

the yellow instruction, which also must 

be finished before moving on to the 

blue instruction. To process all three in 

this fashion takes fifteen cycles. 

To improve efficiency, modern computers pipeline the uops: because the 

different steps in processing an instruction are handled by different sections 

of hardware, they can process multiple instructions at once. For instance, in 

cycle 3 in this diagram, it’s fetching the blue instruction, decoding the yellow 

instruction, and executing the red one. All three are done in seven cycles. 

This may be compared to washing a second load of laundry while the 

previous load is in the dryer. The part of the CPU which fetches and decodes 

is referred to as the Front-End, and the part which executes and retires the 

instruction is called the Back-End.  

All collected data is presented in hierarchical format, with helpful metrics already 
calculated for you based on the events and formulae appropriate to the architecture. 
These reflect how available execution slots in each core’s pipeline are being utilized. 

Expand a column to see a breakdown 
of issues pertaining to its category. 

For any hotspot, if a cell is highlighted pink, 
it means the value for that metric is higher 
than VTune™ Amplifier’s pre-determined 
threshold and should be investigated. 
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The pipeline slot is an abstract concept representing the 

hardware resources required to process one uop. 

Because the Front-End and Back-End can only process so 

many uops in a given amount of time, there’s a fixed 

number of available pipeline slots. On this architecture, 

there are four pipeline slots available per cycle on each 

core. Each slot can be classified into one of four 

categories on any given cycle by what happens to the 

uop in that slot. 

Each pipeline slot category is expected to fall within a 

particular percentage range for a well-tuned application 

of a given type. These ranges are detailed in the table below.  

Note that for all categories but Retiring, lower numbers are better, and for Retiring, higher numbers are welcome.  

These values are simply the normal ranges one can expect for a well-tuned application based on its type. 

 Application Type 

Category Client/Desktop Server/Database/Distributed High Performance Computing 
Retiring 20-50% 10-30% 30-70% 
Bad Speculation 5-10% 5-10% 1-5% 
Front-End Bound 5-10% 10-25% 5-10% 
Back-End Bound 20-40% 20-60% 20-40% 

 

Retiring 

This category represents pipeline slots filled with 

uops that successfully finish executing and retire. 

In general, it is desirable to have as many 

pipeline slots retiring per cycle as possible. 

However, there are still possible inefficiencies in 

this category, mostly concerning doing more 

work than is actually necessary. 

See the section on tuning Retiring for more 

information. 

Bad Speculation 

This category represents uops being removed 

from the Back-End without retiring. This 

effectively means that the uop is cancelled, and 

any time spent processing it has been wasted. 

This happens most often when a branch is 

mispredicted, and the partially-processed uops 

from the incorrect branch must be thrown out. 

See the section on tuning Bad Speculation for 

more information. 
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Front-End Bound 

This category refers to cycles on which the Front-

End could not deliver uops to a pipeline slot or 

slots, even though the Back-End was able to take 

them. This often occurs due to delays in fetching 

or decoding instructions. Using the laundry 

metaphor, the dryer is empty but the washer 

isn’t finished yet.  

See the section on tuning Front-End Bound for 

more information. 

Back-End Bound 

This category refers to cycles on which the Back-

End couldn’t accept uops in a pipeline slot or 

slots. This usually occurs because the Back-End is 

already occupied by uops waiting on data or 

taking longer to execute. Using the laundry 

metaphor, the washer is done, but the dryer is 

still running and can’t accept a new load yet. 

See the section on tuning Back-End Bound for 

more information. 

Software-on-Hardware Tuning 

The Software-on-

Hardware tuning 

process makes use of 

pipeline slot 

categorizations to focus 

optimizations on the 

bottlenecks with the 

greatest impact, as 

measured on the 

particular hardware 

architecture the 

software is intended for.  

Find hotspots 

The first step of the tuning process is to identify the 

hotspots – the sections of code your application spends the 

most time in.  

The more time a function or loop takes, the more impact 

optimization in that chunk of code will have, in accordance 

with Amdahl’s Law, which states that the total speedup of a 

task due to an improvement is limited by the proportion of 

that task which is actually affected by the improvements 

being made. 

Determine Efficiency 
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To find your hotspots using Intel® VTune™ Amplifier, run a Basic Hotspots or Advanced Hotspots analysis.  

Hotspots are generally defined in terms of clockticks. On this processor family, the CPU_CLK_UNHALTED.REF_TSC 

counter measures unhalted clockticks on a per-hardware-thread basis, at reference frequency. This allows you to see 

where cycles are being spent on each individual hardware thread. There is no per-core clocktick counter available on this 

processor, unlike some earlier processors. 

NOTE: Because it counts at the reference frequency for the CPU, the CPU_CLK_UNHALTED.REF_TSC counter 
should not increase or decrease as a result of frequency changes due to Turbo Mode 2.0 or Speedstep Technology. 
This makes it useful for removing the variance introduced by these technologies when comparing multiple analyses. 

 

Once you have identified your hotspots, you can proceed through the rest of the process for each one: determine 

whether it is inefficient, and if so, determine the bottleneck, identify the cause, and optimize the code. 

Determine Efficiency 

A hotspot is defined in terms of the proportion of time the program spends in it, and may not necessarily indicate an 

inefficiency. Sometimes a hotspot is as well-optimized as it can be, but due to the nature of the algorithm, spending 

much of the program’s time there is simply inevitable. Therefore, it is critical to not only identify the hotspots but 

evaluate whether they are efficient or not. There are several methods for determining a hotspot’s efficiency. 

Method 1: Retiring Slots 

One of the simplest methods of determining efficiency is to check 

the percentage of pipeline slots that are retiring. To do this, run a 

General Exploration analysis. Check the Retiring metric for your 

hotspot. If more than 70% of the pipeline slots are retiring, it may 

be beneficial to examine the code for evidence of performing 

unnecessary work, as described in Method 3. 

Otherwise, compare the observed value with the 

expected range for Retiring slots in your application 

type. If the hotspot is below the expected range, it is 

likely inefficient. 

Method 2: CPI Changes 

NOTE: CPI may be affected by Intel® Hyper-Threading. In a serial workload without Intel® Hyper-Threading, the 
theoretical best CPI on a hardware thread is 0.25, because the core can allocate and retire four instructions per cycle. 
With Intel® Hyper-Threading enabled, the theoretical best CPI on a hardware thread would be 0.5, because the 
hardware threads share the allocation and retirement resources. 

Another measurement of performance is Cycles Per Instruction 

(CPI), the average time instructions in your workload take to 

execute. CPI is a general efficiency metric, most useful for 

comparing sets of data, and is not a robust indicator of inefficiency 

in and of itself. The Intel® VTune™ Amplifier interface highlights CPI 

if it exceeds 1, as some well-tuned applications achieve CPIs of 1 or 

below, but many applications naturally have CPIs exceeding 1. It is highly dependent on workload and platform. 

Because of this, changes in CPI between runs are often more useful as (very general) indicators than the CPI values 

themselves. Usually, optimizations lowering CPI are good and those raising it are bad, but there are exceptions. Because 

CPI is a ratio of cycles per instruction, it will change when the code size changes. For the same reason, it is possible to 

have a very low CPI and still be inefficient because more work is being done than is actually needed.  

Percent Retiring by Application Type 

Client/Desktop 
Server/Database/ 

Distributed 
High Performance 

Computing 
20-50% 10-30% 30-70% 
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Relatedly, the presence of AVX instructions may increase the CPI and the stall percentage, but still improve the 

performance, because one vector instruction takes longer to execute than one scalar instruction, but does far more 

useful work in that time. This is discussed in more detail in Method 3. 

Method 3: Code Study 

While Methods 1 and 2 measure how long it takes for 

instructions to execute, that is not the only type of 

inefficiency. Code can also be inefficient if it does 

unnecessary work. This can often result from failure to make 

use of modern instructions. Method 3 makes use of Intel® 

VTune™ Amplifier’s capability as a source and disassembly 

viewer allows you to check your code for this form of 

inefficiency. The source/disassembly viewer can be accessed 

from any analysis type by double clicking on a function name. 

This will open a code view tab already scrolled to the 

appropriate location in the code. Source and Assembly can be 

toggled independently using buttons in the upper left. 

There are two particular types of modern instruction that are commonly missed out on. These are the latest vector 

instructions and fused multiply-add instructions. 

Vector Instructions 

Vector (or SIMD: Single Instruction Multiple Data) instructions can greatly increase performance by allowing multiple 

operations of the same type to be done at once – for instance, adding four numbers to four other numbers, instead of 

performing four separate add instructions. Over time, the available SIMD instructions have been expanded with new 

sets of instructions. If you’re not making use of the latest set of SIMD instructions available on your architecture, you’re 

missing out on the performance benefits they bring. 

When looking through your code’s assembly, especially in areas containing loops, look for instructions that are non-

SIMD, or which are using outdated SIMD instructions, although you should be aware that not all code can be vectorized. 

Note that some older vector instructions may be present among more recent instructions, and this is not a problem. 

However, if newer instructions are absent entirely, you may be compiling without the proper flags for your architecture. 

 Intel Compiler: /QxCORE-AVX512 for Windows*, -xCORE-AVX512 for Linux* 

 GCC: -march=skylake-avx512 

SIMD instructions can be recognized by their names. The table below lists them from oldest to newest. 

Instruction Set Identifiers 

MMX 
MMX instructions can be identified by the fact that they use the mmx registers. MMX instructions 
only operate on integers. 

SSE 

SSE instructions can be recognized by the two-character tag at the end of the instruction name. The 
second character is s, while the first character indicates whether it is scalar (non-SIMD) or packed 
(SIMD). For instance, addss is a scalar SSE add instruction, while the packed equivalent is addps. SSE 
instructions use the xmm registers. 

AVX and AVX2 
AVX and AVX2 instructions both use ymm registers. AVX2 adds additional functionality to AVX, so 
AVX2 instructions often coexist with AVX instructions. These instructions are prefixed with a v. 

AVX-512 AVX-512 instructions use the zmm registers. They are also prefixed with a v. 

 
NOTE: If you are using Intel® VTune™ Amplifier as part of the Intel® Parallel Studio XE suite, you also own a tool called 
Intel® Advisor. Intel® Advisor’s Vectorization Workflow is a powerful analysis tool for evaluating and tuning your use 
of SIMD instructions. You can read more about Intel® Advisor on its official product webpage. 

 

https://software.intel.com/en-us/intel-advisor-xe
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Fused Multiply-Add Instructions 

Fused multiply-add (FMA) instructions have the same latency as a floating point multiply, and essentially perform a 

multiply and an addition as a single operation. This allows for higher peak FLOPs/cycle. Examine your source code for 

operations of the format r=±(x*y)±z. Check the corresponding assembly to see if FMA instructions are being used. 

FMA instruction names begin with VFM or VFNM. 

If you are not using FMAs, you may not be using the proper compiler switches. 

 Intel Compiler:  

o Linux: -fma along with either the –x or –march option set to CORE-AVX2 or higher. 

o Windows: /Qfma along with either the /Qx or /arch option set to CORE-AVX2 or higher. 

 GCC: -xfma or –march=skylake-avx512 

WARNING! Replacing separate multiply and add instructions with a fused multiply-add instruction may produce slightly 
different results. This is because a multiply followed by an add has two rounding steps, one after the multiply and one 
after the add, while a fused multiply-add only rounds once, at the end of the operation. 
More information is available in the Intel® 64 and IA-32 Architectures Software Developer’s Manual. 

 

Diagnose and Optimize the Bottleneck 

Front-End Bound 

For a conceptual explanation of the Front-End Bound category, see the appropriate uOp Pipeline entry. 

 

The Front-End Bound category in VTune™ Amplifier expands into the Front-End Latency and Front-End Bandwidth 

categories, which display the percentage of Front-End Bound slots that fall into these sub-categories. Front-End Bound 

slots are counted toward Latency on cycles when no uops are being delivered at all, and toward Bandwidth on the cycles 

when uops are delivered in some slots, but not all. 

If Front-End Bound is the primary bottleneck in your application, you should focus on Front-End Latency. 

Front-End Latency 

Front-End Latency indicates that you may have a problem with inefficient 

code layout or generation. 

You may want to reduce your code size with switches like /O1 or /Os, 

use linker ordering techniques (using /ORDER on Microsoft*’s linker or a 

linker script for gcc). You can also try Profile-Guided Optimizations (PGO) 

with your compiler. 

For dynamically-generated code, try co-locating hot code, reducing code 

size, and avoiding indirect calls. 

WHY OPTIMIZE THIS? 
Front-End Latency can cause the Back-
End to suffer from instruction starvation: 
not having enough uOps to execute. 
ASSOCIATED METRICS 
Front-End Bound 
 └ Front-End Latency 
   └ All Sub-Metrics 

https://software.intel.com/en-us/articles/intel-sdm
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Back-End Bound 

For a conceptual explanation of the Back-End Bound category, see the appropriate uOp Pipeline entry. 

Expand the Back-End Bound 

category to see the Memory Bound 

and Core Bound sub-metric 

categories. 

Memory Bound refers to cases 

where the Back-End could not accept 

new uops due to outstanding 

memory operations, while Core 

Bound refers to those where the 

issue is saturated execution ports. 

Memory Bound 

 

The Memory Bound sub-category metrics indicate issues related to the various levels of the memory hierarchy. 

Cache Misses 

When optimizing applications with cache misses as a bottleneck, focus 

on the longer-latency accesses from higher-level caches first. 

First check for sharing issues, as these can cause cache misses. See the 

Contested Accesses section for more details. If the cache misses do not 

result from sharing issues, you may want to block your data accesses so 

that they fit into the cache, or change the algorithm to reduce data 

storage. 

Under normal circumstances, writing to memory causes memory to be 

read as well. When a lot of data is being written and will not be used 

again soon, it can be beneficial to bypass the cache entirely using Streaming Stores. When a lot of data is being read, 

software prefetches may be useful to ensure that data has already been loaded by the time it is actually needed, thus 

preventing the delay that results from a cache miss. 

When vectorizing, align the data appropriately if possible, and include the appropriate clauses to inform the compiler. 

Finally, you may wish to try the techniques outlined in section B.5.4.2 of the Intel® 64 and IA-32 Architectures 

Optimization Reference Manual. 

WHY OPTIMIZE THIS? 
Cache misses, especially higher-level 
misses, raise the CPI of an application. 
ASSOCIATED METRICS 
Back-End Bound 

 └ Memory Bound 
   ├ L3 Bound 
   │ └ L3 Latency 
   └ DRAM Bound 

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
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SUB-NUMA CLUSTER MODE 

Sub-NUMA Cluster Mode (SNC) is a system setting that can be configured in the BIOS, which associates LLC slices with 
the nearest memory controller. This allows applications to use NUMA primitives to achieve lower LLC/memory 
latency. Besides optimizing for NUMA, no additional changes to the code are necessary to use SNC. 
 
Previous architecture generations supported Clusters-On-Die (COD). SNC, previously available on Intel® Xeon Phi™ 
processors (codenamed Knights Landing), is similar to COD but lacks some of its drawbacks. 

 Only one UPI caching agent is required, even in 2-SNC mode. 

 Latency for memory access in a remote cluster is smaller. 

 Last Level Cache capacity is used more efficiently in 2-cluster mode, with no duplication of lines in the LLC. 
 
You may want to test whether your code’s performance increases with SNC if your application… 

 has a very large dataset. 

 is latency-sensitive. 

 does not frequently share data across many threads. 

 benefited from Cluster-On-Die (COD) on previous generations. 

 benefits from SNC on Intel® Xeon Phi™ processors. 

 

Remote Memory Accesses 

This metric indicates you need to improve your NUMA affinity. Note that 

it only measures remote memory (DRAM) accesses, and does not include 

data found in the cache in the remote socket. Also note that Malloc() 

and VirtualAlloc() do not touch memory. The operating system 

only reserves a virtual address for the request. Physical memory is not 

allocated until the address is accessed. Each 4K page will be physically 

allocated on the node where the thread makes the first reference. 

It’s best to ensure that memory is first touched (accessed) by the thread 

that will be using it. If thread migration is a problem, try pinning or 

affinitizing threads to cores. For OpenMP*, you can use the affinity 

environment variable. 

If possible, use NUMA-aware options for supporting applications (e.g. softnuma for SQL Server*), and use NUMA-

efficient thread schedulers (such as Intel® Threading Building Blocks). 

Contested Accesses (a.k.a. Write Sharing) 

This issue occurs when one core needs data that is found in a modified 

state in another core’s cache.  This causes the line to be invalidated in 

the holding core’s cache and moved to the requesting core’s cache.  If it 

is written again and another core requests it, the process starts again.  

The cacheline bouncing back and forth between caches causes longer 

access time than if it could be simply shared amongst cores (as with 

read-sharing). Write sharing can be caused by true sharing, as with a lock 

or hot shared data structure, or by false sharing, meaning that the cores 

are modifying two separate pieces of data stored on the same cacheline.  

This metric measures write sharing at the L2 level only – that is, within one socket.  If write sharing is observed at this 

level it is possible it is occurring across sockets as well. Note that in the case of real write sharing that is caused by a lock, 

VTune™ Amplifier’s Locks and Waits analysis should also indicate a problem. However, the Locks and Waits analysis will 

also detect other cases, such as false sharing or write sharing on a hot data structure. 

WHY OPTIMIZE THIS? 
With Non-Uniform Memory Access 
(NUMA) architecture, remote loads have 
higher latency. 
ASSOCIATED METRICS 
Back-End Bound 

 └ Memory Bound 

   └ DRAM Bound 
     └ Memory Latency 
       └ Remote DRAM 

WHY OPTIMIZE THIS? 
Sharing modified data among cores at L2 
level can raise the latency of data access. 
ASSOCIATED METRICS 
Back-End Bound 
 └ Memory Bound 
   └ Contested Accesses 
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If this metric is highlighted for your hotspot, locate the source code line(s) generating HITMs by viewing the source. 

1. Look for the MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS event, which will tag to the instruction that 

generated the HITM. 

2. Use your knowledge of the code to determine whether real or false sharing is taking place. 

 For real sharing, reduce sharing requirements. 

 For false sharing, pad variables to cache line boundaries. 

Data Sharing (a.k.a. Read Sharing) 

This metric measures read sharing, or sharing of “clean” data, across L2 

caches within one CPU socket. The L3 cache has a set of “core valid” bits 

that indicate whether each cache line could be found in any L2 caches on 

the same socket, and if so, which ones.   

The first time a line is brought into the L3 cache, it will have core valid 

bits set to 1 for whichever L2 cache it went into. If that line is then read 

by a different core, then it will be fetched from L3, where the core valid 

bits will indicate it is present in one other core. The other L2 will have to 

be snooped, resulting in a longer latency access for that line.   

The Data Sharing metric measures the impact of that additional access time, when the cache line in question is only 

being read-shared. In the case of read-sharing, the line can co-exist in multiple L2 caches in shared state, and for future 

accesses more than one core valid bit will be set. Then when other cores request the line, no L2 caches will need to be 

snooped, because the presence of 2 or more core valid bits tells the LLC that the line is shared for reading and safe to 

serve. Thus the performance impact only occurs the first time a cache line is requested for reading by a second L2 after 

it has already been placed in the L3 cache.  

The method for addressing this issue is similar to that for Contested Accesses, but uses a different event. If this issue is 

highlighted for your hotspot, locate the source code line(s) generating HITs by viewing the source. 

1. Look for the MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS event, which will tag to the instruction that 

generated the HIT. 

2. Use your knowledge of the code to determine whether real or false sharing is taking place. 

 For real sharing, reduce sharing requirements. 

 For false sharing, pad variables to cache line boundaries. 

Blocked Loads Due to No Store Forwarding 

Store forwarding occurs when two memory instructions, a store followed 

by a load from the same address, exist within the pipeline at the same 

time. Instead of waiting for the data to be stored to cache, it is usually 

“forwarded” through the pipeline directly to the load instruction. This 

prevents the load from having to wait for the memory to be written to 

the cache. However, in some cases, the store cannot be forwarded, and 

the load becomes blocked waiting for it to write to the cache and then 

load it. 

If this metric is highlighted for your hotspot, view the source and look for 

the LD_BLOCKS.STORE_FORWARD event. This event usually tags to the next instruction after the attempted load that 

was blocked. Locate that load, and then try to find the store that cannot forward – usually this is within the prior 10 to 

15 instructions. The most common case is that the store is to a smaller memory space than the load. In this case, the 

problem can be corrected by storing to the same size or a larger space as the load. 

WHY OPTIMIZE THIS? 
Sharing clean data among cores at L2 
level has a penalty the first time due to 
cache coherency. 
ASSOCIATED METRICS 
Back-End Bound 

 └ Memory Bound 
   └ Data Sharing 

WHY OPTIMIZE THIS? 
If it is not possible to forward the result 
of a store through the pipeline, 
dependent loads may be blocked. 
ASSOCIATED METRICS 
Back-End Bound 
 └ Memory Bound 
   └ Loads Blocked by Store Forwarding 
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4K Aliasing 

If a load is issued after a store, and their memory addresses are offset by 

4K, the address of the load will match the previous store in the pipeline, 

as the full address is not used at this point. The pipeline will try to 

forward the results of the store, but later, when the address of the load 

is fully resolved, it will no longer match. The load then has to be re-issued 

from a later point in the pipeline. This tends to have about a 7-cycle 

penalty, but in certain situations (such as with unaligned loads spanning 

two cache lines), it can be worse. 

This issue can easily be resolved by changing the alignment of the load. Methods of correction include aligning data to 

32 bytes, changing the offset between the input and output buffers if possible, or using 16-byte memory accesses on 

memory that is not 32-byte aligned. 

DTLB Misses 

DTLB (Data Translation Lookaside Buffer) misses are more likely to occur 

with server applications, or applications with a large random dataset. 

To address this issue on database or server applications, try using large 

pages. On virtualized systems, use Extended Page Tables (EPT). You can 

also try to target data locality to the Translation Lookaside Buffer (TLB) 

size by blocking data and minimizing random access patterns. Finally, you 

can increase data locality by using Profile Guided Optimization (PGO) or 

better memory allocation. 

 

Core Bound 

 

The Core Bound category contains information relating to the execution core, including a breakdown of port utilization. 

Divider 

Divide instructions are more expensive than other arithmetic 

instructions, so should be avoided where possible.  

Locate the code line(s) generating divide instructions by viewing the 

source and looking for the ARITH.DIVIDER_ACTIVE event.  

Ensure that the code is being compiled with optimizations turned on, 

vectorize divide instructions if you can, and if possible, use reciprocal 

multiplication (e.g. multiply by 0.5 instead of dividing by 2). 

WHY OPTIMIZE THIS? 
Divides take longer than other arithmetic 
instructions and can only be executed on 
a limited number of ports. 
ASSOCIATED METRICS 
Back-End Bound 
 └ Core Bound 
   └ Divider 

WHY OPTIMIZE THIS? 
Aliasing conflicts result in having to  
re-issue loads. 
ASSOCIATED METRICS 
Back-End Bound 

 └ Memory Bound 
   └ 4K Aliasing 

WHY OPTIMIZE THIS? 
First-level DTLB load misses incur a 
latency penalty. Second-level misses 
require a page walk that can affect 
application performance. 
ASSOCIATED METRICS 
Back-End Bound 

 └ Memory Bound 
   └ DTLB Overhead 
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Bad Speculation 

For a conceptual explanation of the Bad Speculation category, see the appropriate uOp Pipeline entry.  

 

Speculation allows uops to begin executing before it is known whether that operation will retire. This allows the pipeline 

to continue working by making an educated guess rather than stalling and waiting until the correct path forward is 

known. Sometimes the speculated path turns out to be incorrect, and the speculated operations need to be cancelled.  

This does not cause program incorrectness, as the incorrect instructions never complete, but it can cause inefficiency as 

time is wasted when the incorrect instructions are discarded and the pipeline starts over with the correct ones. 

Branch Mispredicts 

All applications that branch will have some branch mispredicts, so do not 

be alarmed when you see them in your application. Branch mispredicts 

are only a problem when they have a considerable performance impact. 

Locating the origin of the branch mispredicts may be difficult, as the 

event normally tags to the first instruction in the correct path, rather 

than the abandoned incorrect path. 

Methods of tuning include using compiler options and/or Profile Guided 

Optimization (PGO) to improve code generation, or hand-tuning branch 

statements, which can include techniques like hoisting the most popular targets. As branch misprediction requires a 

branch to (mis)predict, avoid unnecessary branching. 

Machine Clears 

Machine clears are much rarer than branch mispredicts. These are 

generally caused by contention on a lock, failed memory disambiguation 

from 4K aliasing, or self-modifying code. 

Try to identify the cause in your hotspot by looking for specific events. 

MACHINE_CLEARS.MEMORY_ORDERING may indicate 4K aliasing 

conflicts or lock contention. MACHINE_CLEARS.SMC indicates the 

cause is self-modifying code, which should be avoided. 

 

 

 

 

WHY OPTIMIZE THIS? 
Mispredicted branches cause pipeline 
inefficiency due to wasted work and/or 
instruction starvation while waiting for 
the correct instructions to be fetched. 
ASSOCIATED METRICS 
Bad Speculation 
 └ Branch Mispredict 

WHY OPTIMIZE THIS? 
Machine clears flush the pipeline and 
empty store buffers, causing a significant 
latency penalty. 
ASSOCIATED METRICS 
Bad Speculation 
 └ Machine Clears 
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Retiring 

For a conceptual explanation of the Retiring category, see the appropriate uOp Pipeline entry.  

Fixing performance issues often 

increases the portion of uops 

classified as General Retirement, 

which is the best case. 

The other sub-category, Microcode 

Sequencer, indicates the uops retired 

were generated from the microcode 

sequencer. 

While it is the best category, Retiring 

uops can still be inefficient. 

FP Arithmetic 

These metrics represent the breakdown of each type of instruction as a 

percentage of all retired uops. It doesn’t matter how efficiently 

instructions are being retired if those instructions don’t need to be 

executed in the first place.  

Vectorization is a particularly good way to avoid doing unnecessary work. 

Why perform eight operations when you can do the same calculation 

with one? If FP x87 and FP Scalar are significant metrics, try to increase 

the FP Vector percentage by improving vectorization. 

INTEL® ADVISOR 

For deeper vectorization 
optimization, consider using Intel® 
Advisor, a specialized tool for 
thread prototyping and 
vectorization tuning. 

If you purchased Intel® VTune™ 
Amplifier as part of the Intel® 
Parallel Studio XE suite, you already 
own Intel® Advisor.  

You can find out more or download 
a free trial at the Intel® Advisor 
product site. 

 
 

WHY OPTIMIZE THIS? 
Floating Point Arithmetic can be 
expensive if done inefficiently. 
ASSOCIATED METRICS 
Retiring 
 └ General Retirement 

   └ FP Arithmetic 
     └ All Sub-metrics 

Configurations for 

benchmarks 

Benchmark 

Configurations 

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
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Microcode Assists 

Many instructions can cause assists without causing a performance 

problem. If this metric is highlighted for your hotspot, re-sample using 

the assist events to determine the cause. 

If FP_ASSIST.ANY/INST_RETIRED.ANY is significant, check for 

denormals. To fix this problem, enable FTZ and/or DAZ if using SSE/AVX 

instructions, or scale your results up or down depending on the problem. 

Additional Topics 

Metric Reliability 

The General Exploration analysis type (and all hardware event based analysis types) 

multiplexes hardware events during collection, which can result in imprecise results if too 

few samples are collected. More information about how hardware event based data 

collection works can be found in the VTune™ Amplifier Help document. 

VTune™ Amplifier’s GUI will gray out metrics if their reliability is too low 

based on the number of samples collected. This is calculated per-metric 

rather than per-row (as in some older versions of the product), and is 

calculated independently for each sub-metric. 

If a metric is grayed out for your area of interest, consider increasing the 

runtime of the analysis, or allowing multiple runs via a checkbox in the advanced section when configuring the analysis. 

Memory Bandwidth 

Memory bandwidth bottlenecks can increase the latency incurred by cache misses. In 

addition to the General Exploration analysis, VTune™ Amplifier has several specialized 

analysis types designed to investigate specific types of problems. If you suspect you 

have a memory bandwidth issue, try running the Memory Access analysis. 

Begin by computing the maximum theoretical memory bandwidth per socket for your platform in GB/s, based on the 

megatransfers per second and number of channels, using the 

formula to the right. For example, a processor with DDR 1600 and 

4 channels has a maximum theoretical bandwidth of 51.2 GB/s. 

If the total bandwidth per socket is greater than 75% of the maximum theoretical bandwidth, your application may be 

experiencing higher latencies. If appropriate, make system tuning adjustments, such as upgrading/balancing DIMMs or 

disabling hardware prefetchers. Also try to reduce bandwidth usage; remove ineffective software prefetches, make 

algorithmic changes to reduce data storage/sharing, reduce data updates, and balance memory access across sockets. 

TSX Exploration 

Intel® Transactional Synchronization Extensions (Intel® TSX) provide 

hardware transactional memory support. They expose a speculative 

execution mode to the programmer to improve locking performance.  

A large percentage of aborted cycles may represent a negative 

performance impact from the use of Intel TSX. Use this Analysis Type 

along with other performance metrics like elapsed time, CPI, or Retiring 

Percentage to measure how Intel TSX is affecting your performance. For detailed information on Intel TSX performance 

recommendations, see Chapter 12 of the Intel® 64 and IA-32 Architectures Optimization Reference Manual. 

WHY OPTIMIZE THIS? 
Assists from the microcode sequencer 
can have long latency penalties. 
ASSOCIATED METRICS 
Retiring 
 └ Microcode Assists 

The 4.3% in the lower right is 
grayed out as unreliable. 

GB s⁄ =  
〈𝑀𝑇 𝑠⁄ 〉 ∗ 8 Bytes Clock⁄ ∗ 〈𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠〉

1000
 

https://software.intel.com/en-us/vtune-amplifier-help-hardware-event-based-sampling-collection
http://www.intel.com/software/tsx
https://software.intel.com/en-us/articles/intel-sdm
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Useful References 

 VTune™ Amplifier Product Page 

 VTune™ Amplifier Training Resources 

 VTune™ Amplifier User Forums 

 VTune™ Amplifier User’s Guide 

 Intel® 64 and IA-32 Architecture Software Developer’s Manuals 

 VTune™ Amplifier Tuning Guides for Other Microarchitectures 

 Compiler Options Guide 

 Intel® Advisor Product Page 

Legal Disclaimer & Optimization Notice 

OPTIMIZATION NOTICE 

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any 

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. 

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides 

for more information regarding the specific instruction sets covered by this notice. 

Notice revision #20110804 

CONFIGURATIONS FOR 2010-2017 BENCHMARKS 

Platform 
Intel® Xeon™ 

X5680 Processor 
Intel® Xeon™ E5 
2690 Processor 

Intel® Xeon™ E5 
2697v2 Processor 

Intel® Xeon™ E5 
2600v3 Processor 

Intel® Xeon™ E5 
2600v4 Processor 

Intel® Xeon™ E5 
2600v4 Processor 

Intel® Xeon™ 
Platinum 81xx 

Processor 

Code name WSM SNB IVB HSW BDW BDW SKX 

Unscaled Core 
Frequency 

3.33 GHZ 2.9 GHZ 2.7 GHZ 2.2 GHz 2.3 GHz 2.2 GHz 2.5 GHz 

Cores/Socket 6 8 12 18 18 22 28 

Num Sockets 2 2 2 2 2 2 2 

L1 Data Cache 32K 32K 32K 32K 32K 32K 32K 

L2 Cache 256K 256K 256K 256K 256K 256K 1024K 

L3 Cache 12MB 20MB 30MB 46MB 46MB 56MB 40MB 

Memory 48MB 64GB 64GB 128GB 256GB 128GB 192GB 

Memory 
Frequency 

1333 MHz 1600 MHz 1867 MHz 2133 MHz 2400 MHz 2133 MHz 2666 MHz 

Memory Access NUMA NUMA NUMA NUMA NUMA NUMA NUMA 

H/W Prefetchers 
Enabled 

Yes Yes Yes Yes Yes Yes Yes 

HT Enabled Yes Yes Yes Yes Yes Yes Yes 

Turbo Enabled Yes Yes Yes Yes Yes Yes Yes 

C States Disabled Disabled Disabled Disabled Disabled Disabled Disabled 

O/S Name Fedora 20 Fedora 20 RHEL 7.1 Fedora 20 RHEL 7.0 CentOS 7.2 CentOS 7.3 

Operating System 3.11.10-301.fc20 3.11.10-301.fc20 
3.10.0-

229.el7.x86_64 
3.15.10-

200.fc20.x86_64 
3.10.0-123. 
el7.x86_64 

3.10.0-327. 
el7.x86_64 

3.10.0-
514.10.2.el7.x86_64 

Compiler Version icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 

LEGAL DISCLAIMER 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.  NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL 
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS 
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR 
OTHER INTELLECTUAL PROPERTY RIGHT.   
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE 
INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. 
 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any 
features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or 
incompatibilities arising from future changes to them.  The information here is subject to change without notice.  Do not finalize a design with this information. 
 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 
 Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. 
 Copies of documents which have an order number and are referenced in this document or other Intel literature may be obtained by calling 1-800-548-4725 or by 
visiting Intel’s website. 
 Intel® Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology-enabled chipset, BIOS and 
operating system. Performance will vary depending on the specific hardware and software you use. For more information including details on which processors 
support HT Technology, see here   
 Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain 
computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require 
a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor. 
 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for 
Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information. 
 “Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability.  Intel Turbo Boost Technology performance varies 
depending on hardware, software and overall system configuration.  Check with your PC manufacturer on whether your system delivers Intel Turbo Boost 
Technology.  For more information, see http://www.intel.com/technology/turboboost.”   
 Intel, the Intel logo, Xeon, Xeon Inside, VTune, inTru, and Core are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States 
and other countries. 
 *Other names and brands are the property of their respective owners. 
 Copyright © 2017,  Intel Corporation  

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training
https://software.intel.com/en-us/forums/intel-vtune-amplifier-xe
https://software.intel.com/en-us/vtune-amplifier-help
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations
https://software.intel.com/en-us/intel-advisor-xe
http://www.intel.com/info/hyperthreading
http://www.intel.com/technology/turboboost
http://www.intel.com/technology/turboboost
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