
Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 1

How to Use This Guide

This guide is intended for software

developers interested in optimizing their

application’s performance on the Intel®

Xeon® processor Scalable Family 1st Gen,

using the Intel® VTune™ Amplifier

performance profiler. Familiarity with

Intel® Vtune™ Amplifier or

expertise/experience in performance

optimization is not necessary, though

familiarity with the application being

optimized is strongly recommended. While

much of the performance information in

this guide applies equally to other tools,

this document focuses on the use of Intel®

VTune™ Amplifier.

The recommended usage model for this tuning guide is to read through it once before beginning the tuning process to

familiarize yourself with the steps, then follow it again, step by step, as you work through optimizing your application.

You may need to go through the process more than once to fully tune your code.

Before you begin the optimization process, you should make sure that you have used the appropriate compiler

optimization flags for the architecture and chosen an appropriate workload for your application. It is also generally

beneficial to measure the baseline performance of the program before beginning data collection or optimization.

Additionally, some features present in the Intel® Xeon® processor Scalable Family 1st Gen can have significant effects on

performance measurement, and make the process of measuring and interpreting performance data more complex. It

may be beneficial to disable Intel® Hyper-Threading Technology and Intel® Turbo Boost 2.0 Technology for the duration

of the optimization process, including data collection, and then re-enable them when you are done optimizing. Both of

these features can be enabled and disabled through the BIOS on most platforms.

WARNING! Incorrectly modifying BIOS settings from those supplied by the manufacturer may render the system
unusable, and may void the warranty. You should contact the system vendor or manufacturer for specifics before
making any changes.

About Intel® VTune™ Amplifier

Intel® VTune™ Amplifier is a versatile performance analysis tool available as a standalone product or as part of suites like

Intel® Parallel Studio XE (Professional and Cluster Editions only) and Intel® System Studio. It can be run via command

line, GUI, or integration with Microsoft* Visual Studio*, on Windows* and Linux* operating systems. Data can be viewed

on macOS* systems as well. VTune™ Amplifier is compatible with multiple languages, including C/C++, Fortran, Java,

Assembly, Python, and more.

Intel® VTune™ Amplifier contains several pre-configured analysis types; this guide will focus primarily on the General

Exploration analysis. No research or familiarity with the hardware events is necessary, as the pre-configured analysis

types are already set to collect the appropriate hardware events for your microarchitecture. The General Exploration

Analysis is also pre-programmed with all relevant formulae, and will automatically calculate the appropriate metrics for

This image represents a generalized CPU layout intended to help illustrate the concepts
described in this guide. It is not a definitive representation of the microarchitecture.

Inter-
Socket
Link

Core

M
em

o
ry

C
o

n
tr

o
l

Core

Core

I/O

Core

Core

Core

Core

I/O

Core

Core

Core

Core

I/O

Core

Core

Core

Core

I/O

Core

Core

Core

Core

Inter-
Socket

Link

Core

M
em

o
ry

C
o

n
tro

l

Core

Core

DDR4 DDR4

Core

L1D
32KB

L1I
32KB

L2 Cache
1MB

LLC LLC LLC LLC LLC LLC

LLC LLC LLC LLC LLC LLC

LLC LLC LLC LLC

LLC LLC LLC LLC LLC LLC

Intel® VTune™ Amplifier Tuning Guide for the

Intel® Xeon® Processor Scalable Family, 1st Gen

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 2

display in the General Exploration viewpoint (which is the default for this analysis type). Other pre-configured profiles

will display raw data, but still do not require manual input of the desired hardware events.

Most screenshots in this guide were taken in Intel® VTune™ Amplifier 2017 Update 3. They may not necessarily have been taken on the
microarchitecture this guide is written for. Screenshots taken in different versions of this tool may have minor differences.

The uOp Pipeline

The tuning methodology described in this guide relies on the concept of uop pipeline slot categorization. A uop (or more

properly a μop) is a micro-operation, a low-level instruction such as a single addition, load, or less-than comparison.

There are several steps in performing this operation – the uop must be fetched, decoded, executed, etc.

In this simplified example, processing

an instruction involves five steps, each

of which takes one cycle. Without

pipelining, the red instruction must be

completely processed before beginning

the yellow instruction, which also must

be finished before moving on to the

blue instruction. To process all three in

this fashion takes fifteen cycles.

To improve efficiency, modern computers pipeline the uops: because the

different steps in processing an instruction are handled by different sections

of hardware, they can process multiple instructions at once. For instance, in

cycle 3 in this diagram, it’s fetching the blue instruction, decoding the yellow

instruction, and executing the red one. All three are done in seven cycles.

This may be compared to washing a second load of laundry while the

previous load is in the dryer. The part of the CPU which fetches and decodes

is referred to as the Front-End, and the part which executes and retires the

instruction is called the Back-End.

All collected data is presented in hierarchical format, with helpful metrics already
calculated for you based on the events and formulae appropriate to the architecture.
These reflect how available execution slots in each core’s pipeline are being utilized.

Expand a column to see a breakdown
of issues pertaining to its category.

For any hotspot, if a cell is highlighted pink,
it means the value for that metric is higher
than VTune™ Amplifier’s pre-determined
threshold and should be investigated.

1. Fetch

2. Decode

3. Execute

4. Access

Memory
5. Write

Back

Cycle Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. Fetch

2. Decode

3. Execute

4. Access

Memory
5. Write

Back

Cycle Number
1 2 3 4 5 6 7

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 3

The pipeline slot is an abstract concept representing the

hardware resources required to process one uop.

Because the Front-End and Back-End can only process so

many uops in a given amount of time, there’s a fixed

number of available pipeline slots. On this architecture,

there are four pipeline slots available per cycle on each

core. Each slot can be classified into one of four

categories on any given cycle by what happens to the

uop in that slot.

Each pipeline slot category is expected to fall within a

particular percentage range for a well-tuned application

of a given type. These ranges are detailed in the table below.

Note that for all categories but Retiring, lower numbers are better, and for Retiring, higher numbers are welcome.

These values are simply the normal ranges one can expect for a well-tuned application based on its type.

 Application Type

Category Client/Desktop Server/Database/Distributed High Performance Computing
Retiring 20-50% 10-30% 30-70%
Bad Speculation 5-10% 5-10% 1-5%
Front-End Bound 5-10% 10-25% 5-10%
Back-End Bound 20-40% 20-60% 20-40%

Retiring

This category represents pipeline slots filled with

uops that successfully finish executing and retire.

In general, it is desirable to have as many

pipeline slots retiring per cycle as possible.

However, there are still possible inefficiencies in

this category, mostly concerning doing more

work than is actually necessary.

See the section on tuning Retiring for more

information.

Bad Speculation

This category represents uops being removed

from the Back-End without retiring. This

effectively means that the uop is cancelled, and

any time spent processing it has been wasted.

This happens most often when a branch is

mispredicted, and the partially-processed uops

from the incorrect branch must be thrown out.

See the section on tuning Bad Speculation for

more information.

Retiring
Bad

Speculation

Back-End
Bound

Front-End
Bound

uop

allocated?

uop ever
retired?

Back-End

stalled?

Yes No

Yes Yes No No

FRONT-END BACK-END

Fetch & Decode
Instructions,

Predict Branches

Re-order and
Execute

Instructions

Commit Results
to Memory

Execution Unit Retirement
uop

uop
uop
uop

FRONT-END BACK-END

Fetch & Decode
Instructions,

Predict Branches

Re-order and
Execute

Instructions

Commit Results
to Memory

Execution Unit Retirement
uop

uop
uop

uop

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 4

Front-End Bound

This category refers to cycles on which the Front-

End could not deliver uops to a pipeline slot or

slots, even though the Back-End was able to take

them. This often occurs due to delays in fetching

or decoding instructions. Using the laundry

metaphor, the dryer is empty but the washer

isn’t finished yet.

See the section on tuning Front-End Bound for

more information.

Back-End Bound

This category refers to cycles on which the Back-

End couldn’t accept uops in a pipeline slot or

slots. This usually occurs because the Back-End is

already occupied by uops waiting on data or

taking longer to execute. Using the laundry

metaphor, the washer is done, but the dryer is

still running and can’t accept a new load yet.

See the section on tuning Back-End Bound for

more information.

Software-on-Hardware Tuning

The Software-on-

Hardware tuning

process makes use of

pipeline slot

categorizations to focus

optimizations on the

bottlenecks with the

greatest impact, as

measured on the

particular hardware

architecture the

software is intended for.

Find hotspots

The first step of the tuning process is to identify the

hotspots – the sections of code your application spends the

most time in.

The more time a function or loop takes, the more impact

optimization in that chunk of code will have, in accordance

with Amdahl’s Law, which states that the total speedup of a

task due to an improvement is limited by the proportion of

that task which is actually affected by the improvements

being made.

Determine Efficiency

If Inefficient:

 Find Hotspots
Diagnose Bottleneck

For Each

Hotspot

Implement Solution

FRONT-END BACK-END

Fetch & Decode
Instructions,

Predict Branches

Re-order and
Execute

Instructions

Commit Results
to Memory

Execution Unit Retirement

uop
uop

FRONT-END BACK-END

Fetch & Decode
Instructions,

Predict Branches

Re-order and
Execute

Instructions

Commit Results
to Memory

Execution Unit Retirement

uop

uop

uop

uop

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 5

To find your hotspots using Intel® VTune™ Amplifier, run a Basic Hotspots or Advanced Hotspots analysis.

Hotspots are generally defined in terms of clockticks. On this processor family, the CPU_CLK_UNHALTED.REF_TSC

counter measures unhalted clockticks on a per-hardware-thread basis, at reference frequency. This allows you to see

where cycles are being spent on each individual hardware thread. There is no per-core clocktick counter available on this

processor, unlike some earlier processors.

NOTE: Because it counts at the reference frequency for the CPU, the CPU_CLK_UNHALTED.REF_TSC counter
should not increase or decrease as a result of frequency changes due to Turbo Mode 2.0 or Speedstep Technology.
This makes it useful for removing the variance introduced by these technologies when comparing multiple analyses.

Once you have identified your hotspots, you can proceed through the rest of the process for each one: determine

whether it is inefficient, and if so, determine the bottleneck, identify the cause, and optimize the code.

Determine Efficiency

A hotspot is defined in terms of the proportion of time the program spends in it, and may not necessarily indicate an

inefficiency. Sometimes a hotspot is as well-optimized as it can be, but due to the nature of the algorithm, spending

much of the program’s time there is simply inevitable. Therefore, it is critical to not only identify the hotspots but

evaluate whether they are efficient or not. There are several methods for determining a hotspot’s efficiency.

Method 1: Retiring Slots

One of the simplest methods of determining efficiency is to check

the percentage of pipeline slots that are retiring. To do this, run a

General Exploration analysis. Check the Retiring metric for your

hotspot. If more than 70% of the pipeline slots are retiring, it may

be beneficial to examine the code for evidence of performing

unnecessary work, as described in Method 3.

Otherwise, compare the observed value with the

expected range for Retiring slots in your application

type. If the hotspot is below the expected range, it is

likely inefficient.

Method 2: CPI Changes

NOTE: CPI may be affected by Intel® Hyper-Threading. In a serial workload without Intel® Hyper-Threading, the
theoretical best CPI on a hardware thread is 0.25, because the core can allocate and retire four instructions per cycle.
With Intel® Hyper-Threading enabled, the theoretical best CPI on a hardware thread would be 0.5, because the
hardware threads share the allocation and retirement resources.

Another measurement of performance is Cycles Per Instruction

(CPI), the average time instructions in your workload take to

execute. CPI is a general efficiency metric, most useful for

comparing sets of data, and is not a robust indicator of inefficiency

in and of itself. The Intel® VTune™ Amplifier interface highlights CPI

if it exceeds 1, as some well-tuned applications achieve CPIs of 1 or

below, but many applications naturally have CPIs exceeding 1. It is highly dependent on workload and platform.

Because of this, changes in CPI between runs are often more useful as (very general) indicators than the CPI values

themselves. Usually, optimizations lowering CPI are good and those raising it are bad, but there are exceptions. Because

CPI is a ratio of cycles per instruction, it will change when the code size changes. For the same reason, it is possible to

have a very low CPI and still be inefficient because more work is being done than is actually needed.

Percent Retiring by Application Type

Client/Desktop
Server/Database/

Distributed
High Performance

Computing
20-50% 10-30% 30-70%

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 6

Relatedly, the presence of AVX instructions may increase the CPI and the stall percentage, but still improve the

performance, because one vector instruction takes longer to execute than one scalar instruction, but does far more

useful work in that time. This is discussed in more detail in Method 3.

Method 3: Code Study

While Methods 1 and 2 measure how long it takes for

instructions to execute, that is not the only type of

inefficiency. Code can also be inefficient if it does

unnecessary work. This can often result from failure to make

use of modern instructions. Method 3 makes use of Intel®

VTune™ Amplifier’s capability as a source and disassembly

viewer allows you to check your code for this form of

inefficiency. The source/disassembly viewer can be accessed

from any analysis type by double clicking on a function name.

This will open a code view tab already scrolled to the

appropriate location in the code. Source and Assembly can be

toggled independently using buttons in the upper left.

There are two particular types of modern instruction that are commonly missed out on. These are the latest vector

instructions and fused multiply-add instructions.

Vector Instructions

Vector (or SIMD: Single Instruction Multiple Data) instructions can greatly increase performance by allowing multiple

operations of the same type to be done at once – for instance, adding four numbers to four other numbers, instead of

performing four separate add instructions. Over time, the available SIMD instructions have been expanded with new

sets of instructions. If you’re not making use of the latest set of SIMD instructions available on your architecture, you’re

missing out on the performance benefits they bring.

When looking through your code’s assembly, especially in areas containing loops, look for instructions that are non-

SIMD, or which are using outdated SIMD instructions, although you should be aware that not all code can be vectorized.

Note that some older vector instructions may be present among more recent instructions, and this is not a problem.

However, if newer instructions are absent entirely, you may be compiling without the proper flags for your architecture.

 Intel Compiler: /QxCORE-AVX512 for Windows*, -xCORE-AVX512 for Linux*

 GCC: -march=skylake-avx512

SIMD instructions can be recognized by their names. The table below lists them from oldest to newest.

Instruction Set Identifiers

MMX
MMX instructions can be identified by the fact that they use the mmx registers. MMX instructions
only operate on integers.

SSE

SSE instructions can be recognized by the two-character tag at the end of the instruction name. The
second character is s, while the first character indicates whether it is scalar (non-SIMD) or packed
(SIMD). For instance, addss is a scalar SSE add instruction, while the packed equivalent is addps. SSE
instructions use the xmm registers.

AVX and AVX2
AVX and AVX2 instructions both use ymm registers. AVX2 adds additional functionality to AVX, so
AVX2 instructions often coexist with AVX instructions. These instructions are prefixed with a v.

AVX-512 AVX-512 instructions use the zmm registers. They are also prefixed with a v.

NOTE: If you are using Intel® VTune™ Amplifier as part of the Intel® Parallel Studio XE suite, you also own a tool called
Intel® Advisor. Intel® Advisor’s Vectorization Workflow is a powerful analysis tool for evaluating and tuning your use
of SIMD instructions. You can read more about Intel® Advisor on its official product webpage.

https://software.intel.com/en-us/intel-advisor-xe

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 7

Fused Multiply-Add Instructions

Fused multiply-add (FMA) instructions have the same latency as a floating point multiply, and essentially perform a

multiply and an addition as a single operation. This allows for higher peak FLOPs/cycle. Examine your source code for

operations of the format r=±(x*y)±z. Check the corresponding assembly to see if FMA instructions are being used.

FMA instruction names begin with VFM or VFNM.

If you are not using FMAs, you may not be using the proper compiler switches.

 Intel Compiler:

o Linux: -fma along with either the –x or –march option set to CORE-AVX2 or higher.

o Windows: /Qfma along with either the /Qx or /arch option set to CORE-AVX2 or higher.

 GCC: -xfma or –march=skylake-avx512

WARNING! Replacing separate multiply and add instructions with a fused multiply-add instruction may produce slightly
different results. This is because a multiply followed by an add has two rounding steps, one after the multiply and one
after the add, while a fused multiply-add only rounds once, at the end of the operation.
More information is available in the Intel® 64 and IA-32 Architectures Software Developer’s Manual.

Diagnose and Optimize the Bottleneck

Front-End Bound

For a conceptual explanation of the Front-End Bound category, see the appropriate uOp Pipeline entry.

The Front-End Bound category in VTune™ Amplifier expands into the Front-End Latency and Front-End Bandwidth

categories, which display the percentage of Front-End Bound slots that fall into these sub-categories. Front-End Bound

slots are counted toward Latency on cycles when no uops are being delivered at all, and toward Bandwidth on the cycles

when uops are delivered in some slots, but not all.

If Front-End Bound is the primary bottleneck in your application, you should focus on Front-End Latency.

Front-End Latency

Front-End Latency indicates that you may have a problem with inefficient

code layout or generation.

You may want to reduce your code size with switches like /O1 or /Os,

use linker ordering techniques (using /ORDER on Microsoft*’s linker or a

linker script for gcc). You can also try Profile-Guided Optimizations (PGO)

with your compiler.

For dynamically-generated code, try co-locating hot code, reducing code

size, and avoiding indirect calls.

WHY OPTIMIZE THIS?
Front-End Latency can cause the Back-
End to suffer from instruction starvation:
not having enough uOps to execute.
ASSOCIATED METRICS
Front-End Bound
 └ Front-End Latency
 └ All Sub-Metrics

https://software.intel.com/en-us/articles/intel-sdm

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 8

Back-End Bound

For a conceptual explanation of the Back-End Bound category, see the appropriate uOp Pipeline entry.

Expand the Back-End Bound

category to see the Memory Bound

and Core Bound sub-metric

categories.

Memory Bound refers to cases

where the Back-End could not accept

new uops due to outstanding

memory operations, while Core

Bound refers to those where the

issue is saturated execution ports.

Memory Bound

The Memory Bound sub-category metrics indicate issues related to the various levels of the memory hierarchy.

Cache Misses

When optimizing applications with cache misses as a bottleneck, focus

on the longer-latency accesses from higher-level caches first.

First check for sharing issues, as these can cause cache misses. See the

Contested Accesses section for more details. If the cache misses do not

result from sharing issues, you may want to block your data accesses so

that they fit into the cache, or change the algorithm to reduce data

storage.

Under normal circumstances, writing to memory causes memory to be

read as well. When a lot of data is being written and will not be used

again soon, it can be beneficial to bypass the cache entirely using Streaming Stores. When a lot of data is being read,

software prefetches may be useful to ensure that data has already been loaded by the time it is actually needed, thus

preventing the delay that results from a cache miss.

When vectorizing, align the data appropriately if possible, and include the appropriate clauses to inform the compiler.

Finally, you may wish to try the techniques outlined in section B.5.4.2 of the Intel® 64 and IA-32 Architectures

Optimization Reference Manual.

WHY OPTIMIZE THIS?
Cache misses, especially higher-level
misses, raise the CPI of an application.
ASSOCIATED METRICS
Back-End Bound

 └ Memory Bound
 ├ L3 Bound
 │ └ L3 Latency
 └ DRAM Bound

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 9

SUB-NUMA CLUSTER MODE

Sub-NUMA Cluster Mode (SNC) is a system setting that can be configured in the BIOS, which associates LLC slices with
the nearest memory controller. This allows applications to use NUMA primitives to achieve lower LLC/memory
latency. Besides optimizing for NUMA, no additional changes to the code are necessary to use SNC.

Previous architecture generations supported Clusters-On-Die (COD). SNC, previously available on Intel® Xeon Phi™
processors (codenamed Knights Landing), is similar to COD but lacks some of its drawbacks.

 Only one UPI caching agent is required, even in 2-SNC mode.

 Latency for memory access in a remote cluster is smaller.

 Last Level Cache capacity is used more efficiently in 2-cluster mode, with no duplication of lines in the LLC.

You may want to test whether your code’s performance increases with SNC if your application…

 has a very large dataset.

 is latency-sensitive.

 does not frequently share data across many threads.

 benefited from Cluster-On-Die (COD) on previous generations.

 benefits from SNC on Intel® Xeon Phi™ processors.

Remote Memory Accesses

This metric indicates you need to improve your NUMA affinity. Note that

it only measures remote memory (DRAM) accesses, and does not include

data found in the cache in the remote socket. Also note that Malloc()

and VirtualAlloc() do not touch memory. The operating system

only reserves a virtual address for the request. Physical memory is not

allocated until the address is accessed. Each 4K page will be physically

allocated on the node where the thread makes the first reference.

It’s best to ensure that memory is first touched (accessed) by the thread

that will be using it. If thread migration is a problem, try pinning or

affinitizing threads to cores. For OpenMP*, you can use the affinity

environment variable.

If possible, use NUMA-aware options for supporting applications (e.g. softnuma for SQL Server*), and use NUMA-

efficient thread schedulers (such as Intel® Threading Building Blocks).

Contested Accesses (a.k.a. Write Sharing)

This issue occurs when one core needs data that is found in a modified

state in another core’s cache. This causes the line to be invalidated in

the holding core’s cache and moved to the requesting core’s cache. If it

is written again and another core requests it, the process starts again.

The cacheline bouncing back and forth between caches causes longer

access time than if it could be simply shared amongst cores (as with

read-sharing). Write sharing can be caused by true sharing, as with a lock

or hot shared data structure, or by false sharing, meaning that the cores

are modifying two separate pieces of data stored on the same cacheline.

This metric measures write sharing at the L2 level only – that is, within one socket. If write sharing is observed at this

level it is possible it is occurring across sockets as well. Note that in the case of real write sharing that is caused by a lock,

VTune™ Amplifier’s Locks and Waits analysis should also indicate a problem. However, the Locks and Waits analysis will

also detect other cases, such as false sharing or write sharing on a hot data structure.

WHY OPTIMIZE THIS?
With Non-Uniform Memory Access
(NUMA) architecture, remote loads have
higher latency.
ASSOCIATED METRICS
Back-End Bound

 └ Memory Bound

 └ DRAM Bound
 └ Memory Latency
 └ Remote DRAM

WHY OPTIMIZE THIS?
Sharing modified data among cores at L2
level can raise the latency of data access.
ASSOCIATED METRICS
Back-End Bound
 └ Memory Bound
 └ Contested Accesses

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 10

If this metric is highlighted for your hotspot, locate the source code line(s) generating HITMs by viewing the source.

1. Look for the MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS event, which will tag to the instruction that

generated the HITM.

2. Use your knowledge of the code to determine whether real or false sharing is taking place.

 For real sharing, reduce sharing requirements.

 For false sharing, pad variables to cache line boundaries.

Data Sharing (a.k.a. Read Sharing)

This metric measures read sharing, or sharing of “clean” data, across L2

caches within one CPU socket. The L3 cache has a set of “core valid” bits

that indicate whether each cache line could be found in any L2 caches on

the same socket, and if so, which ones.

The first time a line is brought into the L3 cache, it will have core valid

bits set to 1 for whichever L2 cache it went into. If that line is then read

by a different core, then it will be fetched from L3, where the core valid

bits will indicate it is present in one other core. The other L2 will have to

be snooped, resulting in a longer latency access for that line.

The Data Sharing metric measures the impact of that additional access time, when the cache line in question is only

being read-shared. In the case of read-sharing, the line can co-exist in multiple L2 caches in shared state, and for future

accesses more than one core valid bit will be set. Then when other cores request the line, no L2 caches will need to be

snooped, because the presence of 2 or more core valid bits tells the LLC that the line is shared for reading and safe to

serve. Thus the performance impact only occurs the first time a cache line is requested for reading by a second L2 after

it has already been placed in the L3 cache.

The method for addressing this issue is similar to that for Contested Accesses, but uses a different event. If this issue is

highlighted for your hotspot, locate the source code line(s) generating HITs by viewing the source.

1. Look for the MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS event, which will tag to the instruction that

generated the HIT.

2. Use your knowledge of the code to determine whether real or false sharing is taking place.

 For real sharing, reduce sharing requirements.

 For false sharing, pad variables to cache line boundaries.

Blocked Loads Due to No Store Forwarding

Store forwarding occurs when two memory instructions, a store followed

by a load from the same address, exist within the pipeline at the same

time. Instead of waiting for the data to be stored to cache, it is usually

“forwarded” through the pipeline directly to the load instruction. This

prevents the load from having to wait for the memory to be written to

the cache. However, in some cases, the store cannot be forwarded, and

the load becomes blocked waiting for it to write to the cache and then

load it.

If this metric is highlighted for your hotspot, view the source and look for

the LD_BLOCKS.STORE_FORWARD event. This event usually tags to the next instruction after the attempted load that

was blocked. Locate that load, and then try to find the store that cannot forward – usually this is within the prior 10 to

15 instructions. The most common case is that the store is to a smaller memory space than the load. In this case, the

problem can be corrected by storing to the same size or a larger space as the load.

WHY OPTIMIZE THIS?
Sharing clean data among cores at L2
level has a penalty the first time due to
cache coherency.
ASSOCIATED METRICS
Back-End Bound

 └ Memory Bound
 └ Data Sharing

WHY OPTIMIZE THIS?
If it is not possible to forward the result
of a store through the pipeline,
dependent loads may be blocked.
ASSOCIATED METRICS
Back-End Bound
 └ Memory Bound
 └ Loads Blocked by Store Forwarding

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 11

4K Aliasing

If a load is issued after a store, and their memory addresses are offset by

4K, the address of the load will match the previous store in the pipeline,

as the full address is not used at this point. The pipeline will try to

forward the results of the store, but later, when the address of the load

is fully resolved, it will no longer match. The load then has to be re-issued

from a later point in the pipeline. This tends to have about a 7-cycle

penalty, but in certain situations (such as with unaligned loads spanning

two cache lines), it can be worse.

This issue can easily be resolved by changing the alignment of the load. Methods of correction include aligning data to

32 bytes, changing the offset between the input and output buffers if possible, or using 16-byte memory accesses on

memory that is not 32-byte aligned.

DTLB Misses

DTLB (Data Translation Lookaside Buffer) misses are more likely to occur

with server applications, or applications with a large random dataset.

To address this issue on database or server applications, try using large

pages. On virtualized systems, use Extended Page Tables (EPT). You can

also try to target data locality to the Translation Lookaside Buffer (TLB)

size by blocking data and minimizing random access patterns. Finally, you

can increase data locality by using Profile Guided Optimization (PGO) or

better memory allocation.

Core Bound

The Core Bound category contains information relating to the execution core, including a breakdown of port utilization.

Divider

Divide instructions are more expensive than other arithmetic

instructions, so should be avoided where possible.

Locate the code line(s) generating divide instructions by viewing the

source and looking for the ARITH.DIVIDER_ACTIVE event.

Ensure that the code is being compiled with optimizations turned on,

vectorize divide instructions if you can, and if possible, use reciprocal

multiplication (e.g. multiply by 0.5 instead of dividing by 2).

WHY OPTIMIZE THIS?
Divides take longer than other arithmetic
instructions and can only be executed on
a limited number of ports.
ASSOCIATED METRICS
Back-End Bound
 └ Core Bound
 └ Divider

WHY OPTIMIZE THIS?
Aliasing conflicts result in having to
re-issue loads.
ASSOCIATED METRICS
Back-End Bound

 └ Memory Bound
 └ 4K Aliasing

WHY OPTIMIZE THIS?
First-level DTLB load misses incur a
latency penalty. Second-level misses
require a page walk that can affect
application performance.
ASSOCIATED METRICS
Back-End Bound

 └ Memory Bound
 └ DTLB Overhead

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 12

Bad Speculation

For a conceptual explanation of the Bad Speculation category, see the appropriate uOp Pipeline entry.

Speculation allows uops to begin executing before it is known whether that operation will retire. This allows the pipeline

to continue working by making an educated guess rather than stalling and waiting until the correct path forward is

known. Sometimes the speculated path turns out to be incorrect, and the speculated operations need to be cancelled.

This does not cause program incorrectness, as the incorrect instructions never complete, but it can cause inefficiency as

time is wasted when the incorrect instructions are discarded and the pipeline starts over with the correct ones.

Branch Mispredicts

All applications that branch will have some branch mispredicts, so do not

be alarmed when you see them in your application. Branch mispredicts

are only a problem when they have a considerable performance impact.

Locating the origin of the branch mispredicts may be difficult, as the

event normally tags to the first instruction in the correct path, rather

than the abandoned incorrect path.

Methods of tuning include using compiler options and/or Profile Guided

Optimization (PGO) to improve code generation, or hand-tuning branch

statements, which can include techniques like hoisting the most popular targets. As branch misprediction requires a

branch to (mis)predict, avoid unnecessary branching.

Machine Clears

Machine clears are much rarer than branch mispredicts. These are

generally caused by contention on a lock, failed memory disambiguation

from 4K aliasing, or self-modifying code.

Try to identify the cause in your hotspot by looking for specific events.

MACHINE_CLEARS.MEMORY_ORDERING may indicate 4K aliasing

conflicts or lock contention. MACHINE_CLEARS.SMC indicates the

cause is self-modifying code, which should be avoided.

WHY OPTIMIZE THIS?
Mispredicted branches cause pipeline
inefficiency due to wasted work and/or
instruction starvation while waiting for
the correct instructions to be fetched.
ASSOCIATED METRICS
Bad Speculation
 └ Branch Mispredict

WHY OPTIMIZE THIS?
Machine clears flush the pipeline and
empty store buffers, causing a significant
latency penalty.
ASSOCIATED METRICS
Bad Speculation
 └ Machine Clears

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 13

Retiring

For a conceptual explanation of the Retiring category, see the appropriate uOp Pipeline entry.

Fixing performance issues often

increases the portion of uops

classified as General Retirement,

which is the best case.

The other sub-category, Microcode

Sequencer, indicates the uops retired

were generated from the microcode

sequencer.

While it is the best category, Retiring

uops can still be inefficient.

FP Arithmetic

These metrics represent the breakdown of each type of instruction as a

percentage of all retired uops. It doesn’t matter how efficiently

instructions are being retired if those instructions don’t need to be

executed in the first place.

Vectorization is a particularly good way to avoid doing unnecessary work.

Why perform eight operations when you can do the same calculation

with one? If FP x87 and FP Scalar are significant metrics, try to increase

the FP Vector percentage by improving vectorization.

INTEL® ADVISOR

For deeper vectorization
optimization, consider using Intel®
Advisor, a specialized tool for
thread prototyping and
vectorization tuning.

If you purchased Intel® VTune™
Amplifier as part of the Intel®
Parallel Studio XE suite, you already
own Intel® Advisor.

You can find out more or download
a free trial at the Intel® Advisor
product site.

WHY OPTIMIZE THIS?
Floating Point Arithmetic can be
expensive if done inefficiently.
ASSOCIATED METRICS
Retiring
 └ General Retirement

 └ FP Arithmetic
 └ All Sub-metrics

Configurations for

benchmarks

Benchmark

Configurations

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 14

Microcode Assists

Many instructions can cause assists without causing a performance

problem. If this metric is highlighted for your hotspot, re-sample using

the assist events to determine the cause.

If FP_ASSIST.ANY/INST_RETIRED.ANY is significant, check for

denormals. To fix this problem, enable FTZ and/or DAZ if using SSE/AVX

instructions, or scale your results up or down depending on the problem.

Additional Topics

Metric Reliability

The General Exploration analysis type (and all hardware event based analysis types)

multiplexes hardware events during collection, which can result in imprecise results if too

few samples are collected. More information about how hardware event based data

collection works can be found in the VTune™ Amplifier Help document.

VTune™ Amplifier’s GUI will gray out metrics if their reliability is too low

based on the number of samples collected. This is calculated per-metric

rather than per-row (as in some older versions of the product), and is

calculated independently for each sub-metric.

If a metric is grayed out for your area of interest, consider increasing the

runtime of the analysis, or allowing multiple runs via a checkbox in the advanced section when configuring the analysis.

Memory Bandwidth

Memory bandwidth bottlenecks can increase the latency incurred by cache misses. In

addition to the General Exploration analysis, VTune™ Amplifier has several specialized

analysis types designed to investigate specific types of problems. If you suspect you

have a memory bandwidth issue, try running the Memory Access analysis.

Begin by computing the maximum theoretical memory bandwidth per socket for your platform in GB/s, based on the

megatransfers per second and number of channels, using the

formula to the right. For example, a processor with DDR 1600 and

4 channels has a maximum theoretical bandwidth of 51.2 GB/s.

If the total bandwidth per socket is greater than 75% of the maximum theoretical bandwidth, your application may be

experiencing higher latencies. If appropriate, make system tuning adjustments, such as upgrading/balancing DIMMs or

disabling hardware prefetchers. Also try to reduce bandwidth usage; remove ineffective software prefetches, make

algorithmic changes to reduce data storage/sharing, reduce data updates, and balance memory access across sockets.

TSX Exploration

Intel® Transactional Synchronization Extensions (Intel® TSX) provide

hardware transactional memory support. They expose a speculative

execution mode to the programmer to improve locking performance.

A large percentage of aborted cycles may represent a negative

performance impact from the use of Intel TSX. Use this Analysis Type

along with other performance metrics like elapsed time, CPI, or Retiring

Percentage to measure how Intel TSX is affecting your performance. For detailed information on Intel TSX performance

recommendations, see Chapter 12 of the Intel® 64 and IA-32 Architectures Optimization Reference Manual.

WHY OPTIMIZE THIS?
Assists from the microcode sequencer
can have long latency penalties.
ASSOCIATED METRICS
Retiring
 └ Microcode Assists

The 4.3% in the lower right is
grayed out as unreliable.

GB s⁄ =
〈𝑀𝑇 𝑠⁄ 〉 ∗ 8 Bytes Clock⁄ ∗ 〈𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠〉

1000

https://software.intel.com/en-us/vtune-amplifier-help-hardware-event-based-sampling-collection
http://www.intel.com/software/tsx
https://software.intel.com/en-us/articles/intel-sdm

Intel® VTune™ Amplifier Tuning Guide for the Intel® Xeon® Processor Scalable Family, 1st Gen

 15

Useful References

 VTune™ Amplifier Product Page

 VTune™ Amplifier Training Resources

 VTune™ Amplifier User Forums

 VTune™ Amplifier User’s Guide

 Intel® 64 and IA-32 Architecture Software Developer’s Manuals

 VTune™ Amplifier Tuning Guides for Other Microarchitectures

 Compiler Options Guide

 Intel® Advisor Product Page

Legal Disclaimer & Optimization Notice

OPTIMIZATION NOTICE

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides

for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

CONFIGURATIONS FOR 2010-2017 BENCHMARKS

Platform
Intel® Xeon™

X5680 Processor
Intel® Xeon™ E5
2690 Processor

Intel® Xeon™ E5
2697v2 Processor

Intel® Xeon™ E5
2600v3 Processor

Intel® Xeon™ E5
2600v4 Processor

Intel® Xeon™ E5
2600v4 Processor

Intel® Xeon™
Platinum 81xx

Processor

Code name WSM SNB IVB HSW BDW BDW SKX

Unscaled Core
Frequency

3.33 GHZ 2.9 GHZ 2.7 GHZ 2.2 GHz 2.3 GHz 2.2 GHz 2.5 GHz

Cores/Socket 6 8 12 18 18 22 28

Num Sockets 2 2 2 2 2 2 2

L1 Data Cache 32K 32K 32K 32K 32K 32K 32K

L2 Cache 256K 256K 256K 256K 256K 256K 1024K

L3 Cache 12MB 20MB 30MB 46MB 46MB 56MB 40MB

Memory 48MB 64GB 64GB 128GB 256GB 128GB 192GB

Memory
Frequency

1333 MHz 1600 MHz 1867 MHz 2133 MHz 2400 MHz 2133 MHz 2666 MHz

Memory Access NUMA NUMA NUMA NUMA NUMA NUMA NUMA

H/W Prefetchers
Enabled

Yes Yes Yes Yes Yes Yes Yes

HT Enabled Yes Yes Yes Yes Yes Yes Yes

Turbo Enabled Yes Yes Yes Yes Yes Yes Yes

C States Disabled Disabled Disabled Disabled Disabled Disabled Disabled

O/S Name Fedora 20 Fedora 20 RHEL 7.1 Fedora 20 RHEL 7.0 CentOS 7.2 CentOS 7.3

Operating System 3.11.10-301.fc20 3.11.10-301.fc20
3.10.0-

229.el7.x86_64
3.15.10-

200.fc20.x86_64
3.10.0-123.
el7.x86_64

3.10.0-327.
el7.x86_64

3.10.0-
514.10.2.el7.x86_64

Compiler Version icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2 icc version 17.0.2

LEGAL DISCLAIMER

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE
INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any
features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.
 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
 Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
 Copies of documents which have an order number and are referenced in this document or other Intel literature may be obtained by calling 1-800-548-4725 or by
visiting Intel’s website.
 Intel® Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology-enabled chipset, BIOS and
operating system. Performance will vary depending on the specific hardware and software you use. For more information including details on which processors
support HT Technology, see here
 Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain
computer system software enabled for it. Functionality, performance or other benefits will vary depending on hardware and software configurations and may require
a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.
 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for
Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.
 “Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies
depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost
Technology. For more information, see http://www.intel.com/technology/turboboost.”
 Intel, the Intel logo, Xeon, Xeon Inside, VTune, inTru, and Core are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.
 *Other names and brands are the property of their respective owners.
 Copyright © 2017, Intel Corporation

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training
https://software.intel.com/en-us/forums/intel-vtune-amplifier-xe
https://software.intel.com/en-us/vtune-amplifier-help
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/processor-specific-performance-analysis-papers
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations
https://software.intel.com/en-us/intel-advisor-xe
http://www.intel.com/info/hyperthreading
http://www.intel.com/technology/turboboost
http://www.intel.com/technology/turboboost

	How to Use This Guide
	About Intel® VTune™ Amplifier
	The uOp Pipeline
	Retiring
	Bad Speculation
	Front-End Bound
	Back-End Bound

	Software-on-Hardware Tuning
	Find hotspots
	Determine Efficiency
	Method 1: Retiring Slots
	Method 2: CPI Changes
	Method 3: Code Study
	Vector Instructions
	Fused Multiply-Add Instructions

	Diagnose and Optimize the Bottleneck
	Front-End Bound
	Front-End Latency

	Back-End Bound
	Memory Bound
	Cache Misses
	Remote Memory Accesses
	Contested Accesses (a.k.a. Write Sharing)
	Data Sharing (a.k.a. Read Sharing)
	Blocked Loads Due to No Store Forwarding
	4K Aliasing
	DTLB Misses

	Core Bound
	Divider

	Bad Speculation
	Branch Mispredicts
	Machine Clears

	Retiring
	FP Arithmetic
	Microcode Assists

	Additional Topics
	Metric Reliability
	Memory Bandwidth
	TSX Exploration

	Useful References
	Legal Disclaimer & Optimization Notice
	Optimization Notice
	Configurations for 2010-2017 Benchmarks
	Legal Disclaimer

