

2

Things To cover in slides

Gradient descent

Linear regression

Logistic regression

Training/validation/test splits

Loss function, derivatives

Full batch, mini batch/stochastic
gradient descent

Regularization

Epoch

Supervised vs unsupervised training

TensorFlow: Optimizer class,
global step

3

Key things to take away from today

Loss functions

Gradient descent

Automatic differentiation

What is Machine Learning?

Machine Learning

Abstractly:

Giving computers the ability to learn automatically

Concretely:

Using math/stats to estimate a model by using data

5

6

Remember Excel?

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

7

Remember Excel?

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

8

Kinds of Machine Learning Tasks

Regression: predict continuous valued output

House $ based on attributes▪

How far to the left or right to turn a car▪

Classification: predict discreet categories of output

Which kind of animal is in a picture?▪

What sort of anomaly is in an x▪ -ray scan, if any?

9

A regression task

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

y is continuous

10

Kinds of Machine Learning Methods

Supervised: train model
using specific labeled or known
data points

▪ The model is trying to hit a target

▪ Targets or Labels:

– Price of a house

– The correct steering angle for a car

– Category of an item

– Boolean: Yes/No, Risk/Safe

Unsupervised: train model
without labels

▪ Model is trying to find patterns of input
data

▪ Examples:

– Clustering

– Autoencoders

11

A is supervised learning task

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

Label: y

Input: x

12

Linear Regression

Best fit line: 𝑦 ̂=𝑊𝑥+𝑏

Line ▪ ‘through the middle’ of a scatter plot

How do we define ▪ “best fit”?

Supervised regression task

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

13

cosT FuncTion: J

Idea:

Create a measure model wrongness: a cost function or J and use math to minimize how
wrong we are

Question: how to determine what cost function to use?

Answer A:

▪ Use statistical theory to find an MLE

▪ Create measure that empirically works

▪ Think hard for a long time

Answer B: Reuse the work of smart people

14

Cost function for linear regression

Classical: sum of squared errors, or SSE

A little nicer: mean squared errors: MSE

▪ Simply divide error by the number of examples

▪ If # training examples increases, your error doesn’t

J = ෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2

ො𝑦𝑖 = 𝑊𝑥𝑖 + 𝑏;

Sum over all n
training examples

J =
1

2𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
22 is here to make

math nicer soon

15

How to minimize loss?

Use calculus!

Take derivative, find values for 𝑊,𝑏 that make it equal zero!

J =
1

2𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 =

1

2𝑛
෍

𝑖=1

𝑛

(𝑊𝑥𝑖 + 𝑏) − 𝑦𝑖
2

𝜕𝐽

𝜕𝑊
=
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 ො𝑦𝑖 − 𝑦𝑖
𝜕𝐽

𝜕𝑏
=
1

𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖

Make both equal 0

16

How to make derivative equal zero?

For linear regression: you can use linear algebra to solve exactly

Problems

1. For big X, hard to compute inverse

2. Inverse is ill-conditioned

3. Not all models have a nice closed form linear algebra solution!

What to do?

෡𝑊 = 𝑋𝑇𝑋 −1𝑋𝑇𝑌

W and b are lumped together here

Gradient descent
Guess and check for data scientists

J
(cost)

W

18

19

J
(cost)

W

Random guess put us here

20

𝜕𝐽

𝜕𝑊

J
(cost)

W

21

𝜕𝐽

𝜕𝑊
< 0

J
(cost)

W

22

𝜕𝐽

𝜕𝑊
< 0

J
(cost)

W

Move to the right!

23

𝜕𝐽

𝜕𝑊
< 0

J
(cost)

W

Move to the right!

∆𝑊

24

J
(cost)

W

Cost at new weight value

25

J
(cost)

W

𝜕𝐽

𝜕𝑊

26

J
(cost)

W

𝜕𝐽

𝜕𝑊
< 0

27

J
(cost)

W

𝜕𝐽

𝜕𝑊
< 0

Move to the right!

28

J
(cost)

W

29

The process of doing gradient descent (math-version)

1. Find the derivative of loss w.r.t to weights over training data

▪ Plug data into our derivative function, and sum up over data points

∆𝑊 =෍

𝑖=1

𝑛
𝜕𝐽

𝜕𝑊
𝑥𝑖 , 𝑦𝑖

𝜕𝐽

𝜕𝑊
(𝑥𝑖 , 𝑦𝑖) =

1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 ො𝑦𝑖 − 𝑦𝑖

The number we’ll use
to adjust the weight

Derivative of MSE

30

The process oF doing gradienT descenT (maTh-version)

2. Adjust the weight by subtracting some amount of ∆𝑊

▪ 𝛼 (alpha) is known as the learning rate

▪ It’s the first hyper-parameter we’ve seen in the class

3. Repeat until model is “done training”

▪ We can also adjust the learning rate as we train

𝑊:= 𝑊 − 𝛼 ∙ ∆𝑊

Minus adjusts W in the correct direction

31

Adjusting the learning rate

𝜕𝐽

𝜕𝑊
< 0

J
(cost)

W𝛼 ∙ ∆𝑊

32

Adjusting the learning rate

𝜕𝐽

𝜕𝑊
< 0

J
(cost)

W𝛼 ∙ ∆𝑊

Bigger 𝛼

33

adJusTing The learning raTe

𝜕𝐽

𝜕𝑊
< 0

J
(cost)

W𝛼 ∙ ∆𝑊

Smaller 𝛼

34

Process of gradient decent (computation graph)

Start with our basic model1.

𝑌▪ =𝑊𝑥+𝑏

X

W
var

mul

b
var

add

Y

35

process oF gradienT decenT (compuTaTion graph)

2. Define our cost function

▪ In this case tf.square(add – y)

▪ Built in: tf.squared_difference(add, y)

X

W
var

mul

b
var

add

Y

cost
(J)

36

Process of gradient decent (computation graph)

3. Get the derivatives of the cost w.r.t Variables

▪
𝜕𝐽

𝜕𝑊
,
𝜕𝐽

𝜕𝑏

▪ Sum over all examples = ∆𝑊, ∆𝑏

X

W
var

mul

b
var

add

Y

cost
(J)

derivatives

37

Process of doing gradient decent (computation graph)

Use derivatives and learning rate to update Variables4.

𝑊▪ ≔ 𝑊 − 𝛼 ∙ ∆𝑊

𝑏▪ ≔ 𝑏 − 𝛼 ∙ ∆𝑏

X

W
var

mul

b
var

add

Y 𝜶

cost
(J)

derivatives
Weight

updates

38

Cost needs to be defined like other operations in TF

cost = tf.reduce_mean(tf.squared_difference(add, Y))

X

W
var

mul

b
var

add

Y 𝜶

cost
(J)

derivatives
Weight
updates

39

Derivatives and updates use a tf.Optimizer

Optimizer computes derivatives and applies them to Variables

X

W
var

mul

b
var

add

Y 𝜶

cost
(J)

derivatives
Weight
updates

40

The Optimizer super-class

Two building block methods:

1. compute_gradients()

▪ Given a loss and list of Variables, will compute partial derivatives

opt = tf.train.GradientDescentOptimizer(learning_rate)

grads = opt.compute_gradients(loss, [W, b])

▪ You can then perform additional tweaks, if you’d like (not today)

2. apply_gradients()

▪ Creates an Operation that updates the variables, given gradients

train = opt.apply_gradients(grads)

…

sess.run(train, feed_dict)

41

Helper function: Optimizer.minimize()

opt.minimize()

Given a loss target, creates an Operation that automatically computes and applies ▪

gradients for all trainable Variables that affect the loss

Same as using ▪ compute_gradients and apply_gradients without adjusting
the gradient values

Easiest▪ —use this unless you are manually adjusting gradients

train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

…

sess.run(train, feed_dict)

42

How does tf.Optimizer work?

Let’s look at the model up through the loss function

cost (J)

sumsquareminus

y_hat

add

mulX

W
var

b
var

Y

43

how does TF.opTimizer work?

The output of the sum Operation is our cost, J

y_hat cost (J)

sumsquareminus

y_hat

add

mulX

W
var

b
var

Y

sum 𝑧1, … , 𝑧𝑛 =෍

𝑖=1

𝑛

𝑧𝑖

44

whaT is derivaTive oF sum FuncTion w.r.T any inpuT?

𝜕𝑠𝑢𝑚

𝜕𝑧𝑝
= 1

cost (J)

sum

45

What is derivative of square function w.r.t any input?

cost (J)

sumsquare

𝜕sum

𝜕𝑧𝑝

𝜕square

𝜕𝑧
= 2𝑧square 𝑧 = 𝑧2

46

What is derivative of minus w.r.t either input?

𝜕sum

𝜕𝑧𝑝

𝜕minu𝑠

𝜕𝑎
= 1minus 𝑎, 𝑏 = 𝑎 − 𝑏

𝜕minu𝑠

𝜕𝑏
= −1

cost (J)

sumsquareminus

𝜕square

𝜕𝑧

47

whaT is derivaTive oF add w.r.T eiTher inpuT?

𝜕sum

𝜕𝑧𝑝

𝜕square

𝜕𝑧

𝜕add

𝜕𝑎
= 1add 𝑎, 𝑏 = 𝑎 + 𝑏

𝜕add

𝜕𝑏
= 1

𝜕minus

𝜕𝑏

𝜕minus

𝜕𝑎 cost (J)

sumsquareminusadd

48

whaT is derivaTive oF mulTiplicaTion w.r.T eiTher inpuT?

𝜕sum

𝜕𝑧𝑝

𝜕square

𝜕𝑧

𝜕minus

𝜕𝑏

cost (J)

sumsquareminusadd

mul

𝜕add

𝜕𝑎

𝜕add

𝜕𝑏

𝜕mul

𝜕𝑎
= 𝑏mul 𝑎, 𝑏 = 𝑎 × 𝑏

𝜕mul

𝜕𝑏
= 𝑎

𝜕minus

𝜕𝑎

49

What is derivative of multiplication w.r.t either input?

𝜕sum

𝜕𝑧𝑝

𝜕square

𝜕𝑧

𝜕minus

𝜕𝑏

cost (J)

sumsquareminusadd

mul

𝜕add

𝜕𝑎

𝜕add

𝜕𝑏

𝜕mul

𝜕𝑎
= 𝑏mul 𝑎, 𝑏 = 𝑎 × 𝑏

𝜕mul

𝜕𝑏
= 𝑎

𝜕minus

𝜕𝑎

𝜕mul

𝜕𝑎

𝜕mul

𝜕𝑏

50

Now, we move from generic arguments to specific links (outputs)
in our graph.

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕square

𝜕𝑚𝑖𝑛𝑢𝑠

𝜕minus

𝜕𝑌

𝜕add

𝜕𝑚𝑢𝑙

𝜕add

𝜕𝑏

𝜕mul

𝜕𝑋

𝜕mul

𝜕𝑊

𝜕𝑠𝑢𝑚

𝜕𝑧𝑝
→

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕𝑧
→

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕𝑚𝑖𝑛𝑢𝑠

cost (J)

sumsquareminusadd

mulX

W
var

b
var

Y

𝜕minus

𝜕𝑎𝑑𝑑

51

Now we can use the chain rule to get derivative w.r.t weights!

𝜕mul

𝜕𝑋

𝜕mul

𝜕𝑊

cost (J)

sumsquareminusadd

mulX

W
var

b
var

Y

𝜕minus

𝜕𝑎𝑑𝑑

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕square

𝜕𝑚𝑖𝑛𝑢𝑠

𝜕minus

𝜕𝑌

𝜕add

𝜕𝑚𝑢𝑙

𝜕add

𝜕𝑏

52

With respect to b:

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕square

𝜕𝑚𝑖𝑛𝑢𝑠

𝜕add

𝜕𝑏

cost (J)

sumsquareminusadd

b
var

𝐽 = 𝑠𝑢𝑚;
𝜕𝑠𝑢𝑚

𝜕𝑏
=

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒
∙
𝜕square

𝜕𝑚𝑖𝑛𝑢𝑠
∙
𝜕minus

𝜕𝑎𝑑𝑑
∙
𝜕add

𝜕𝑏

𝜕minus

𝜕𝑎𝑑𝑑

53

remember The “cancelling” eFFecT oF chain rule:

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕square

𝜕𝑚𝑖𝑛𝑢𝑠

𝜕add

𝜕𝑏

cost (J)

sumsquareminusadd

b
var

𝐽 = 𝑠𝑢𝑚;
𝜕𝑠𝑢𝑚

𝜕𝑏
=

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒
∙
𝜕square

𝜕𝑚𝑖𝑛𝑢𝑠
∙
𝜕minus

𝜕𝑎𝑑𝑑
∙
𝜕add

𝜕𝑏

𝜕minus

𝜕𝑎𝑑𝑑

54

Similar process for derivative with respect to W

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕square

𝜕𝑚𝑖𝑛𝑢𝑠

𝐽 = 𝑠𝑢𝑚;
𝜕𝑠𝑢𝑚

𝜕𝑊
=

𝜕𝑠𝑢𝑚

𝜕𝑠𝑞𝑢𝑎𝑟𝑒
∙
𝜕𝑠𝑞𝑢𝑎𝑟𝑒

𝜕𝑚𝑖𝑛𝑢𝑠
∙
𝜕𝑚𝑖𝑛𝑢𝑠

𝜕𝑎𝑑𝑑
∙
𝜕𝑎𝑑𝑑

𝜕𝑚𝑢𝑙
∙
𝜕𝑚𝑢𝑙

𝜕𝑊

cost (J)

sumsquareminusadd

mul

W
var

𝜕add

𝜕𝑚𝑢𝑙

𝜕mul

𝜕𝑊

𝜕minus

𝜕𝑎𝑑𝑑

55

This is automatic differentiation

By using easily differentiable pieces, we get the derivative with respect to
arbitrary inputs

Generalizes as long as you use differentiable pieces

This is how TensorFlow, Theano, Torch, etc. work

▪ Each differentiable Operation has a “gradient” function that defines how to take the
derivative w.r.t its different inputs

This is essentially Backpropagation

Vectorization

Parallelizing our math

So far, we’ve limited our model:

Single▪ -variable regression

Or, at least explicit placeholders for each input x–

Only processing one example at a time▪

We can do better on both:

Multi▪ -variable regression - with only one placeholder input!

Process many pieces of data in a ▪ “batch”

57

58

Vectorization #1: multi-variable regression

Let’s modify the function for our linear model:

෠𝑌 ∈ ℝ - an scalar prediction

𝑋 ∈ ℝ𝑚 - an m length vector. Inputs 𝑥1, 𝑥2, … , 𝑥𝑚

𝑊 ∈ ℝ𝑚 - an m-dimensional vector.

▪ m weights corresponding to 𝑥1, 𝑥2, … , 𝑥𝑚

𝑏 ∈ ℝ - a scalar bias

෠𝑌 = 𝑋𝑇𝑊 + 𝑏

59

Vectorization #1: multi-variable regression

Double check that matrix dimensions work out

෠𝑌 = 𝑋𝑇𝑊 + 𝑏
[1] [1,m] [m,1] [1]

[1]

x

60

How to accomplish this in TensorFlow

Give x placeholder and W weight a vector shape:

x = tf.placeholder(tf.float32, shape=[m, 1])

W = tf.Variable(tf.truncated_normal([m,1]))

Use matrix multiplication and transpose to calculate

y_hat = tf.matmul(tf.transpose(x), W) + b

61

Vectorization #2: Batch examples

Let’s modify the function for our linear model:

෠𝑌 ∈ ℝ𝑛 - an n-dimensional vector.

▪ Predictions for n examples

𝑋 ∈ ℝ𝑛×𝑚 - an n-by-m matrix.

▪ Inputs 𝑥1, 𝑥2, … , 𝑥𝑚 for n examples

𝑊 ∈ ℝ𝑚 - an m-dimensional vector.

▪ m weights corresponding to 𝑥1, 𝑥2, … , 𝑥𝑚

𝑏 ∈ ℝ𝑛 - a vector of identical bias numbers

෠𝑌 = 𝑋𝑇𝑊 + 𝑏

෠𝑌 = 𝑋 𝑊 + 𝑏

62

Vectorization #2: Batch examples

Double check that matrix dimensions work out

[n,1] [n,m] [m,1] [n,1]

[n,1]

x

63

How to accomplish this in TensorFlow

Give x placeholder matrix shape, W vector shape:

x = tf.placeholder(tf.float32, shape=[None, m])

W = tf.Variable(tf.truncated_normal([m,1]))

▪ None in a TensorFlow shape means that any length is allowed

▪ Allows you to input any amount of training examples

Use matrix multiplication to calculate

y_hat = tf.matmul(x, W) + b

This is what we’ll end up doing for most of this class.

Odds and ends

Training, validation, and test sets

In order to better evaluate our model, we split our data into training,
validation, and test sets

Training data is used to train the model as we discussed

Validation data is used to periodically evaluate the model on held-out data

Test data is only ever used once, as a final evaluation of the model

Common split percentages are 60%, 20%, 20%

65

Training, validaTion, and TesT seTs

We do this to evaluate how much our model is overfitting the data, or
“memorizing” answers

We want the model to generalize to examples not in the training data

66

67

Logistic regression (binary classification)

J = −
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 log ො𝑦𝑖 + (1 − 𝑦𝑖)(log(1 − ො𝑦𝑖))

ො𝑦𝑖 =
1

1 + 𝑒−𝑧𝑖
𝑧𝑖 = 𝑊T𝑋𝑖 + 𝑏

68

but wait, there’s more!

Regularization

Input normalization

But we’ll hold off until next week.

