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AlexNet

Created in 2012 for the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC)

Task: predict the correct label from among 1000 classes

Dataset: around 1.2 million images

Considered the “flash point” for modern deep learning

Demolished the competition.

▪ Top 5 error rate of 15.4%

▪ Next best: 26.2%
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Model diagram
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Model diagram

Should be 227x227 (no one knows why it was written as 224x224 in the paper)
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Notes

They perform data augmentation for training

▪ Cropping, horizontal flipping, and more

▪ Useful to help make more use out of given training data

They split up the model across two GPUs, as illustrated in previous image

▪ This generally doesn’t happen in modern CNN architectures

▪ We can replicate this effect by splitting Tensors in two
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AlexNet: main takeaways

CNNs are very powerful for image processing

Didn’t change too much about LeNet-5

▪ Added extra depth, computation

Basic template: 

▪ Convolutions with ReLUs

▪ Sometimes add maxpool after convolutional layer

▪ Fully connected layers at the end before a softmax classifier

GPUs are really good for this sort of computation!



Saving and Loading Models
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Saving TensorFlow Models

So far: our TensorFlow models have been transient

▪ We build, train, and play with them. Then they poof into the ether

We need to be able to save our models for later use!

TensorFlow has built in mechanisms for saving/restoring
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How TensorFlow stores data

Recall that TensorFlow keeps the Graph definition separate from the current 
values of Variables

The same thing occurs with saving data to disk.

defaultSession

Graph: default

sess

Variable values:
• “var” : 0.0

input2 b

input1 a

c d

my
add
op

my
mul
op

Var
store

Initial value: 0.0

assign
inc

init

init
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How TensorFlow stores data

Graph info (ops, connections, etc) is stored in a GraphDef protocol buffer

Session

Graph: default

sess

Variable values:
• “var” : 0.0

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Var
store

Initial value: 0.0

assign
inc

init

init
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How TensorFlow stores data

A MetaGraph encapsulates the graph definition along with relevant meta 
data. Stored as a .meta file

Session

Graph: default

sess

Variable values:
• “var” : 0.0

MetaGraph

Meta 
data

Collect
ions
Saver 
info

default

input2 b

input1 a

c d

my
add
op
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mul
op

Var
store

Initial value: 0.0

assign
inc

init

init
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How TensorFlow stores data

Variable state (weights, biases, etc) is stored in two files: a .index file and a 
.data file (older file format = .ckpt)

Session

Graph: default

sess

Variable values:
• “var” : 0.0

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Var
store

Initial value: 0.0

assign
inc

init

init
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The Saver class

The Saver class is designed to manage saving and loading both Variable 
checkpoints and MetaGraphs

The simplest use case when saving:

with graph.as_default():

..create a graph, define some variables

saver = tf.train.Saver()

with tf.Session(graph=graph) as sess:

..train the model

saver.save(sess, ‘./my_model’)
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The Saver class

Then, to load a model:

new_graph = tf.Graph()

with new_graph.as_default():

saver = tf.train.import_meta_graph(‘./my_model.meta’)

with tf.Session(graph=new_graph) as sess:

saver.restore(sess, ‘./my_model’)

..continue training



16

Saving multiple checkpoints over time

You can pass in a global_step to the Saver.save() method

▪ Adds a numeric suffix to the exported files, e.g. ‘my_model-100’

▪ Allows you to easily save versions of a trained model over time

saver.save(sess, ‘./my_model’, global_step=global_step)

You can automatically get the latest version name with 
tf.train.latest_checkpoint()

saver.restore(sess, tf.train.latest_checkpoint(‘./’))



Optimizer Alternatives
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Standard update rule for gradient descent

Recall our weight update with gradient descent

Can we change this update rule to speed up training?

W≔𝑊 − 𝛼 ⋅ Δ𝑊
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Idea 1: Momentum

Assuming our error curve is bowl-ish shaped, can assume we’ll be going in 
roughly the same direction over time

We alter our weight update by a factor of previous update

𝜂 is often referred to as the “momentum”

𝑣t ≔ 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ Δ𝑊

W≔𝑊 − 𝑣𝑡
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Without Momentum
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With Momentum
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Nesterov Momentum

Momentum might accidentally “roll up the other side of the hill”

Nesterov momentum looks ahead before updating weights

W≔𝑊 − 𝑣𝑡

𝑣𝑡 = 𝑢𝑡 − 𝛼 ⋅ Δ(𝑊 − 𝑢𝑡)

𝑢𝑡 = 𝜂 ⋅ 𝑣𝑡−1
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Nesterov Momentum

Source: Lecture by Geoffrey Hinton

Momentum Vector

Gradient/correction

Nesterov steps

Standard momentum steps

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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AdaGrad

Idea: scale each weight’s updates separately

Update frequently-updated weights less

Keep running tally of previous updates

Divide new updates by factor of previous tally

▪ 𝐺𝑡 - Accumulated sum of squares for each individual Δ𝑊

▪ Downside: eventually, all weights diminish to zero

𝑊 ≔𝑊−
𝜂

𝐺𝑡 + 𝜖
⨀Δ𝑊
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AdaDelta and RMSProp

Variation on AdaGrad- seeks to reduce diminishing gradients

▪ Developed separately, but very similar algorithms

Basic idea: decay squared gradients (instead of full sum)

RMSProp update:

𝐺𝑡 = 𝛾 ⋅ 𝐺𝑡−1 + 1 − 𝛾 ∆𝑊2

𝑊 ≔𝑊 −
𝜂

𝐺𝑡 + 𝜖
⨀Δ𝑊

Note: In AdaDelta, 𝛾 (gamma/momentum) is 
𝜌 (rho) as named parameter in TensorFlow
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Adam

Idea: decaying tally of both sum squares and regular sum of weight updates:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∆𝑊 𝑣𝑡 = 𝛽2𝑣𝑡−1 + 1 − 𝛽2 ∆𝑊2

ෝ𝑚𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 ො𝑣𝑡 =

𝑣𝑡

1 − 𝛽1
𝑡

𝑊 ≔𝑊 −
𝜂

ො𝑣𝑡 + 𝜖
⨀ෝ𝑚𝑡
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Good news!

TensorFlow has optimizers built in:

tf.train.MomentumOptimizer()

tf.train.MomentumOptimizer(…, use_nesterov=True)

tf.train.AdagradOptimizer()

tf.train.AdadeltaOptimizer()

tf.train.AdamOptimizer()

Link to API documentation

https://www.tensorflow.org/api_guides/python/train#Optimizers
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Which to use?

Many papers use vanilla momentum, with 𝜂 around 0.9

RMSProp is supposedly good for RNNs

Adam is generally a very strong choice overall

Great blog post on optimizers by Sebastian Ruder 

▪ Really great visualizations of learning

http://sebastianruder.com/optimizing-gradient-descent/index.html



