


Alexnet



3

AlexNet

Created in 2012 for the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC)

Task: predict the correct label from among 1000 classes

Dataset: around 1.2 million images

Considered the “flash point” for modern deep learning

Demolished the competition.

▪ Top 5 error rate of 15.4%

▪ Next best: 26.2%



4

Model diagram



5

Model diagram

Should be 227x227 (no one knows why it was written as 224x224 in the paper)



6

Notes

They perform data augmentation for training

▪ Cropping, horizontal flipping, and more

▪ Useful to help make more use out of given training data

They split up the model across two GPUs, as illustrated in previous image

▪ This generally doesn’t happen in modern CNN architectures

▪ We can replicate this effect by splitting Tensors in two



7

AlexNet: main takeaways

CNNs are very powerful for image processing

Didn’t change too much about LeNet-5

▪ Added extra depth, computation

Basic template: 

▪ Convolutions with ReLUs

▪ Sometimes add maxpool after convolutional layer

▪ Fully connected layers at the end before a softmax classifier

GPUs are really good for this sort of computation!



Saving and Loading Models



9

Saving TensorFlow Models

So far: our TensorFlow models have been transient

▪ We build, train, and play with them. Then they poof into the ether

We need to be able to save our models for later use!

TensorFlow has built in mechanisms for saving/restoring



10

How TensorFlow stores data

Recall that TensorFlow keeps the Graph definition separate from the current 
values of Variables

The same thing occurs with saving data to disk.

defaultSession

Graph: default

sess

Variable values:
• “var” : 0.0

input2 b

input1 a

c d

my
add
op

my
mul
op

Var
store

Initial value: 0.0

assign
inc

init

init



11

How TensorFlow stores data

Graph info (ops, connections, etc) is stored in a GraphDef protocol buffer

Session

Graph: default

sess

Variable values:
• “var” : 0.0

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Var
store

Initial value: 0.0

assign
inc

init

init



12

How TensorFlow stores data

A MetaGraph encapsulates the graph definition along with relevant meta 
data. Stored as a .meta file

Session

Graph: default

sess

Variable values:
• “var” : 0.0

MetaGraph

Meta 
data

Collect
ions
Saver 
info

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Var
store

Initial value: 0.0

assign
inc

init

init



13

How TensorFlow stores data

Variable state (weights, biases, etc) is stored in two files: a .index file and a 
.data file (older file format = .ckpt)

Session

Graph: default

sess

Variable values:
• “var” : 0.0

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Var
store

Initial value: 0.0

assign
inc

init

init



14

The Saver class

The Saver class is designed to manage saving and loading both Variable 
checkpoints and MetaGraphs

The simplest use case when saving:

with graph.as_default():

..create a graph, define some variables

saver = tf.train.Saver()

with tf.Session(graph=graph) as sess:

..train the model

saver.save(sess, ‘./my_model’)



15

The Saver class

Then, to load a model:

new_graph = tf.Graph()

with new_graph.as_default():

saver = tf.train.import_meta_graph(‘./my_model.meta’)

with tf.Session(graph=new_graph) as sess:

saver.restore(sess, ‘./my_model’)

..continue training



16

Saving multiple checkpoints over time

You can pass in a global_step to the Saver.save() method

▪ Adds a numeric suffix to the exported files, e.g. ‘my_model-100’

▪ Allows you to easily save versions of a trained model over time

saver.save(sess, ‘./my_model’, global_step=global_step)

You can automatically get the latest version name with 
tf.train.latest_checkpoint()

saver.restore(sess, tf.train.latest_checkpoint(‘./’))



Optimizer Alternatives



18

Standard update rule for gradient descent

Recall our weight update with gradient descent

Can we change this update rule to speed up training?

W≔𝑊 − 𝛼 ⋅ Δ𝑊



19

Idea 1: Momentum

Assuming our error curve is bowl-ish shaped, can assume we’ll be going in 
roughly the same direction over time

We alter our weight update by a factor of previous update

𝜂 is often referred to as the “momentum”

𝑣t ≔ 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ Δ𝑊

W≔𝑊 − 𝑣𝑡



20

Without Momentum



21

With Momentum



22

Nesterov Momentum

Momentum might accidentally “roll up the other side of the hill”

Nesterov momentum looks ahead before updating weights

W≔𝑊 − 𝑣𝑡

𝑣𝑡 = 𝑢𝑡 − 𝛼 ⋅ Δ(𝑊 − 𝑢𝑡)

𝑢𝑡 = 𝜂 ⋅ 𝑣𝑡−1



23

Nesterov Momentum

Source: Lecture by Geoffrey Hinton

Momentum Vector

Gradient/correction

Nesterov steps

Standard momentum steps

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


24

AdaGrad

Idea: scale each weight’s updates separately

Update frequently-updated weights less

Keep running tally of previous updates

Divide new updates by factor of previous tally

▪ 𝐺𝑡 - Accumulated sum of squares for each individual Δ𝑊

▪ Downside: eventually, all weights diminish to zero

𝑊 ≔𝑊−
𝜂

𝐺𝑡 + 𝜖
⨀Δ𝑊



25

AdaDelta and RMSProp

Variation on AdaGrad- seeks to reduce diminishing gradients

▪ Developed separately, but very similar algorithms

Basic idea: decay squared gradients (instead of full sum)

RMSProp update:

𝐺𝑡 = 𝛾 ⋅ 𝐺𝑡−1 + 1 − 𝛾 ∆𝑊2

𝑊 ≔𝑊 −
𝜂

𝐺𝑡 + 𝜖
⨀Δ𝑊

Note: In AdaDelta, 𝛾 (gamma/momentum) is 
𝜌 (rho) as named parameter in TensorFlow



26

Adam

Idea: decaying tally of both sum squares and regular sum of weight updates:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∆𝑊 𝑣𝑡 = 𝛽2𝑣𝑡−1 + 1 − 𝛽2 ∆𝑊2

ෝ𝑚𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 ො𝑣𝑡 =

𝑣𝑡

1 − 𝛽1
𝑡

𝑊 ≔𝑊 −
𝜂

ො𝑣𝑡 + 𝜖
⨀ෝ𝑚𝑡



27

Good news!

TensorFlow has optimizers built in:

tf.train.MomentumOptimizer()

tf.train.MomentumOptimizer(…, use_nesterov=True)

tf.train.AdagradOptimizer()

tf.train.AdadeltaOptimizer()

tf.train.AdamOptimizer()

Link to API documentation

https://www.tensorflow.org/api_guides/python/train#Optimizers


28

Which to use?

Many papers use vanilla momentum, with 𝜂 around 0.9

RMSProp is supposedly good for RNNs

Adam is generally a very strong choice overall

Great blog post on optimizers by Sebastian Ruder 

▪ Really great visualizations of learning

http://sebastianruder.com/optimizing-gradient-descent/index.html



