(intel') Nervana Al Academ

. ALEXNET AND OPTIMIZERS

ALEXNET

Created in 2012 for the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)

Task: predict the correct label from among 1000 classes
Dataset: around 1.2 million images
Considered the “flash point” for modern deep learning

Demolished the competition.
= Top 5 error rate of 15.4%

= Next best: 26.2%

(intel/ Nervana Al Academy \ 3

MODEL DIAGRAM

3|
192 128 2048 2048 \dense
S 13 13
‘._‘-},‘_“‘ EN h___k‘--‘ ‘
- ENER 3 L . R .
3l s ' 13 dense’| [dense ”
1000
. 192 192 128 Max - |
, 2048 2048
Stride Max 128 Max pooling
Uof 4 pooling pooling
3 78

intel' Nervana Al Academy . 4

MODEL DIAGRAM

& 3[1. LJ .
- 55 56 2048 2048 \dense
13 13
3ol 3| | N s >
3[A= : 13 dense’| [dense "
1000
’ 192 192 128 Max L _—
: 2048
Stride Max 128 Max pooling = o
Uof 4 pooling pooling
3 78

Should be 227x227 (no one knows why it was written as 224x224 in the paper)

intel' Nervana Al Academy . 5

NOTES

They perform data augmentation for training
= Cropping, horizontal flipping, and more

= Useful to help make more use out of given training data

They split up the model across two GPUs, as illustrated in previous image
= This generally doesn’t happen in modern CNN architectures

= We can replicate this effect by splitting Tensors in two

(intel/ Nervana Al Academy | 6

ALEXNET: MAIN TAKEAWAYS

CNNs are very powerful for image processing

Didn't change too much about LeNet-5
= Added extra depth, computation

Basic template:
= Convolutions with ReLUs

= Sometimes add maxpool after convolutional layer

» Fully connected layers at the end before a softmax classifier

GPUs are really good for this sort of computation!

i@ Nervana Al Academy \ 7

SAVING TENSORFLOW MODELS

So far: our TensorFlow models have been transient
= We build, train, and play with them. Then they poof into the ether

We need to be able to save our models for later use!

TensorFlow has built in mechanisms for saving/restoring

i@ Nervana Al Academy \ 9

HOW TENSORFLOW STORES DATA

Recall that TensorFlow keeps the Graph definition separate from the current
values of Variables

The same thing occurs with saving data to disk.

. ’
Session sess I default:
--------------------- N : a |
1 Graph: default I I :

1 1 |
————————————————————— "4 1 add c |
pmTEEEEEEEEEEEEEEEm—— N : :
[variable values | ['
1, "00 I I store i
I v I I :Ln:Lt !
[I I !
1 1 I :
N e e e e e 7 |‘ Initial value: 1
/

intel' Nervana Al Academy \

HOW TENSORFLOW STORES DATA

Graph info (ops, connections, etc) is stored in a GraphDef protocol buffer

. 4
Session sess i default:
--------------------- N : a |
1 Graph:default I I :

1 | 1
————————————————————— >4 1 add c I
T TEEEEEEEEEEEEEEEEE- (N : :
[Variable values: ‘l I . I
| . uvarn . O O I 1 S ore]
| s I | :|.n:|.t I
[I I !
| 1 1 :
A N 7/ |‘ Initial value: i

intel'Nervana'AIAcademy \ 11

HOW TENSORFLOW STORES DATA

A MetaGraph encapsulates the graph definition along with relevant meta
data. Stored as a .meta file

MetaGraph :

) o iy S CTTTTS :

Session sess S defaultl] I
(ST \ : : a | : I:
| Graph: default I 3 |} Meta I:
e e e e ————— J H add o — 11 data gt
S — N E ::COLLect“
n I [

[variable values: |) Lyorons
| . " 0.0 i = Store I 1 Saver : .
I v I s :|.n:|.t o i
i . sl : | info '
| = 1 .
' L] n

A N _’ . | Initial value: O. : : : .
. ‘\ _________________________ V2 Y, 4 E

intel' Nervana Al Academy \

HOW TENSORFLOW STORES DATA

Variable state (weights, biases, etc) is stored in two files: a .index file and a
.data file (older file format = .ckpt)

. '
Session sess i default:

I
(= —————————- -== I a i
1 Graph:default I : :
e —————— . | add o — |
pmmmmmmmmmoaoiis —— ! |
[Variable values: ‘l I . I
| e ‘“var":0.0 i 1 S ore |
| s I | :Ln:Lt I
[I I !
| 1 1 :
A N 7/ |‘ Initial value: i
/

intel'Nervana'AIAcademy \ 13

THE SAVER CLASS

The Saver class is designed to manage saving and loading both Variable
checkpoints and MetaGraphs

The simplest use case when saving:
with graph.as_default():
. .create a graph, define some variables
saver = tf.train.Saver ()
with tf.Session (graph=graph) as sess:

..train the model

saver.save(sess, ‘./my model’)

intel'Nervana'AIAcademy \ 14

THE SAVER CLASS

Then, to load a model:
new_graph = tf.Graph/()
with new graph.as default():
saver = tf.train.import meta graph(‘'./my model.meta’)
with tf.Session(graph=new graph) as sess:

saver.restore(sess, ‘./my model’)

. .continue training

intel'Nervana'AIAcademy . 15

SAVING MULTIPLE CHECKPOINTS OVER TIME

You can pass in a global_step to the Saver.save() method

= Adds a numeric suffix to the exported files, e.g. ‘my_model-100’

= Allows you to easily save versions of a trained model over time

saver.save(sess, ‘./my model’, global step=global step)

You can automatically get the latest version name with
tf.train.latest checkpoint()

saver.restore(sess, tf.train.latest checkpoint(". /7))

intel'Nervana'AIAcademy \ 16

STANDARD UPDATE RULE FOR GRADIENT DESCENT

Recall our weight update with gradient descent

W=W—-—a- - AW

Can we change this update rule to speed up training?

intel'Nervana'AIAcademy \ 18

IDEA1: MOMENTUM

Assuming our error curve is bowl-ish shaped, can assume we'll be going in
roughly the same direction over time

We alter our weight update by a factor of previous update
Ve =N Vg —a- AW
W:=W — v,

n is often referred to as the “momentum”

i@Nervana"AlAcademy \ 19

WITHOUT MOMENTUM

WITH MOMENTUM

intel'l\lervana"AIAcademy . 21

NESTEROV MOMENTUM

Momentum might accidentally “roll up the other side of the hill”

Nesterov momentum looks ahead before updating weights

U =1 " Ve

Ve = U —a- AW —u;)

W::W_vt

intel'Nervana"AIAcademy \ 22

NESTEROV MOMENTUM

g

—=> Momentum Vector ———> Nesterov steps

—> Gradient/correction —> Standard momentum steps

Source: Lecture by Geoffrey Hinton

intel'Nervana"AIAcademy \ 23

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

ADAGRAD

Idea: scale each weight's updates separately
Update frequently-updated weights less
Keep running tally of previous updates

Divide new updates by factor of previous tally

W =W — |1/4

n
— A
JGr + €
" G, - Accumulated sum of squares for each individual AW

= Downside: eventually, all weights diminish to zero

(intel/ Nervana Al Academy \ 24

ADADELTA AND RMSPROP

Variation on AdaGrad- seeks to reduce diminishing gradients

= Developed separately, but very similar algorithms

Basic idea: decay squared gradients (instead of full sum)

RMSProp update:

Gr =V Geeq + (1 —y)AW?

Note: In AdaDelta, y (gamma/momentum) is
W p (rho) as named parameter in TensorFlow

W:=W—L®A
\/?t+e

intel'Nervana"AIAcademy \ 25

ADAM

Idea: decaying tally of both sum squares and regular sum of weight updates:

my = Byme_q + (1 — B1)AW Vp = BaVi—q + (1 — L) AW?

! !
L My ~ Ut
T BT

N\ 4
n ~
W:=W — Om;
U+ €

i@Nervana"AlAcademy \ 26

GOOD NEWS!

TensorFlow has optimizers built in:

tf.train.MomentumOptimizer ()
tf.train.MomentumOptimizer (.., use nesterov=True)
tf.train.AdagradOptimizer ()
tf.train.AdadeltaOptimizer ()
tf.train.AdamOptimizer ()

Link to APl documentation

(intel/ Nervana Al Academy \ 27

https://www.tensorflow.org/api_guides/python/train#Optimizers

WHICH TO USE?

Many papers use vanilla momentum, with n around 0.9
RMSProp is supposedly good for RNNs

Adam is generally a very strong choice overall

Great blog post on optimizers by Sebastian Ruder
= Really great visualizations of learning

i@Nervana’AlAcademy \ 28

http://sebastianruder.com/optimizing-gradient-descent/index.html

