

2

How to Train a Neural Net?

 Put in training inputs, get the
output

 Compare output to correct
answers: look at loss function J

 Adjust and repeat!

 Backpropagation tells us how to
make a single adjustment using
calculus.

3

How to Train a Neural Net?

 Put in training inputs, get the
output

 Compare output to correct
answers: look at loss function J

 Adjust and repeat!

 Backpropagation tells us how to
make a single adjustment using
calculus.

Input
(Feature
Vector)

Output
(Label)

Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

4

How have we trained before?

Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

5

How have we trained before?

6

Feedforward Neural Network

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑦1

𝑦2

𝑦3

7

Forward Propagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

Pass in
Input 𝑦1

𝑦2

𝑦3

8

Forward Propagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

Calculate each Layer

𝑦1

𝑦2

𝑦3

9

Forward Propagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

Get Output

𝑦1

𝑦2

𝑦3

10

Forward Propagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

Evaluate:

𝑦1

𝑦2

𝑦3

𝐽 𝑦𝑖 , 𝑦𝑖

Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

11

How have we trained before?

12

How to calculate gradient?

Chain rule

13

How to Train a Neural Net?

 How could we change the weights to make our Loss Function lower?

 Think of neural net as a function F: X -> Y

 F is a complex computation involving many weights W_k

 Given the structure, the weights “define” the function F (and therefore define our
model)

 Loss Function is J(y,F(x))

 Get for every weight in the network.

 This tells us what direction to adjust each Wk if we want to lower our loss function.

 Make an adjustment and repeat!

14

How to Train a Neural Net?
𝜕𝐽

𝜕𝑊𝑘

15

Feedforward Neural Network

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

Want:

𝑦1

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊𝑘𝑊(1) 𝑊(2) 𝑊(3)

16

Calculus to the Rescue

 Use calculus, chain rule, etc. etc.

 Functions are chosen to have “nice” derivatives

 Numerical issues to be considered

 Recall that: 𝜎′(𝑧) = 𝜎(𝑧)(1−𝜎(𝑧))

 Though they appear complex, above are easy to compute!

17

Punchline

𝜕𝐽

𝜕𝑊(2)
= (𝑦 − 𝑦) ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧(3) ⋅ 𝑎(2)

𝜕𝐽

𝜕𝑊(1)
= 𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧(3) ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

𝜕𝐽

𝜕𝑊(3)
= (𝑦 − 𝑦) ⋅ 𝑎(3)

18

Backpropagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

Want:

𝑦1

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊𝑘𝑊(1) 𝑊(2) 𝑊(3)

19

Backpropagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑦1

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊3𝑊(1) 𝑊(2)

20

Backpropagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑦1

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊3𝑊(1)

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊2

21

Backpropagation

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑦1

𝑦2

𝑦3

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊3

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊2

𝜕𝐽 𝑦𝑖 , 𝑦𝑖
𝜕𝑊1

Gradient Descent!

1. Make prediction

2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

4. Update parameters by taking a step in the opposite direction

5. Iterate

22

How have we trained before?

 Remember: 𝜎′(𝑧) = 𝜎(𝑧)(1−𝜎(𝑧))≤.25

 As we have more layers, the gradient gets very small at the early layers.

 This is known as the “vanishing gradient” problem.

 For this reason, other activations (such as ReLU) have become more common.

23

Vanishing Gradients

𝜕𝐽

𝜕𝑊(1)
= 𝑦 − 𝑦 ⋅ 𝑊 3 ⋅ 𝜎′ 𝑧(3) ⋅ 𝑊 2 ⋅ 𝜎′ 𝑧 2 ⋅ 𝑋

Recall that:

Other Activation Functions

 Hyperbolic tangent function

 Pronounced “tanch”

25

Hyperbolic Tangent Function

𝑡𝑎𝑛ℎ 𝑧 =
sinh(𝑧)

cosh(𝑧)
=

𝑒2𝑥 − 1

𝑒2𝑥 + 1

𝑡𝑎𝑛ℎ 0 = 0
𝑡𝑎𝑛ℎ ∞ = 1

𝑡𝑎𝑛ℎ −∞ = −1

26

Hyperbolic Tangent Function

27

Rectified Linear Unit (ReLU)

𝑅𝑒𝐿𝑈 𝑧 =
0, 𝑧 < 0
𝑧, 𝑧 ≥ 0

= max 0, 𝑧

𝑅𝑒𝐿𝑈 0 = 0
𝑅𝑒𝐿𝑈 𝑧 = 𝑧
𝑅𝑒𝐿𝑈 −𝑧 = 0

for (𝑧 ≫ 0)

28

Rectified Linear Unit (ReLU)

29

“Leaky” Rectified Linear Unit (ReLU)

for (𝑧 ≫ 0)

𝐿𝑅𝑒𝐿𝑈 𝑧 =
𝛼𝑧, 𝑧 < 0
𝑧, 𝑧 ≥ 0

= max 𝛼𝑧, 𝑧

𝐿𝑅𝑒𝐿𝑈 0 = 0
𝐿𝑅𝑒𝐿𝑈 𝑧 = 𝑧

𝐿𝑅𝑒𝐿𝑈 −𝑧 = −𝛼𝑧

for (𝛼 < 1)

30

“Leaky” Rectified Linear Unit (ReLU)

31

What next?

We now know how to make a single update to a model given some data.

But how do we do the full training?

We will dive into these details in the next lecture.

