

2

Motivation—Image Data

 So far, the structure of our neural network treats all inputs interchangeably.

 No relationships between the individual inputs

 Just an ordered set of variables

 We want to incorporate domain knowledge into the architecture of a Neural Network.

3

Motivation

Image data has important structures, such as;

 ”Topology” of pixels

 Translation invariance

 Issues of lighting and contrast

 Knowledge of human visual system

 Nearby pixels tend to have similar values

 Edges and shapes

 Scale Invariance—objects may appear at different sizes in the image.

4

Motivation—Image Data

 Fully connected would require a vast number of parameters

 MNIST images are small (32 x 32 pixels) and in grayscale

 Color images are more typically at least (200 x 200) pixels x 3 color channels (RGB) =
120,000 values.

 A single fully connected layer would require (200x200x3)2 = 14,400,000,000 weights!

 Variance (in terms of bias-variance) would be too high

 So we introduce “bias” by structuring the network to look for certain kinds of patterns

5

Motivation

 Features need to be “built up”

 Edges -> shapes -> relations between shapes

 Textures

 Cat = two eyes in certain relation to one another + cat fur texture.

 Eyes = dark circle (pupil) inside another circle.

 Circle = particular combination of edge detectors.

 Fur = edges in certain pattern.

6

Kernels

 A kernel is a grid of weights “overlaid” on image, centered on one pixel

 Each weight multiplied with pixel underneath it

 Output over the centered pixel is 𝑝=1
𝑃 𝑊𝑝 ⋅ 𝑝𝑖𝑥𝑒𝑙𝑝

 Used for traditional image processing techniques:

– Blur

– Sharpen

– Edge detection

– Emboss

7

Kernel: 3x3 Example

Input OutputKernel

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

8

Kernel: 3x3 Example

Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

2

9

Kernel: 3x3 Example

Input OutputKernel

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

10

Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line
Detector Corner Detector

Horizontal Line
Detector

-1 1 -1

-1 1 -1

-1 1 -1

-1 -1 -1

1 1 1

-1 -1 -1

-1 -1 -1

-1 1 1

-1 1 1

11

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

 Let the Neural Network learn which kernels are most useful

 Use same set of kernels across entire image (translation invariance)

 Reduces number of parameters and “variance” (from bias-variance point of view)

12

Convolutions

13

Convolution Settings—Grid Size

Grid Size (Height and Width):

 The number of pixels a kernel “sees” at once

 Typically use odd numbers so that there is a “center” pixel

 Kernel does not need to be square

Height: 3, Width: 3 Height: 3, Width: 1Height: 1, Width: 3

14

Convolution Settings—Padding

Padding

 Using Kernels directly, there will be an “edge effect”

 Pixels near the edge will not be used as “center pixels” since there are not enough
surrounding pixels

 Padding adds extra pixels around the frame

 So every pixel of the original image will be a center pixel as the kernel moves
across the image

 Added pixels are typically of value zero (zero-padding)

-2

15

Without Padding

OutputKernel

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

-1 1 2

1 1 0

-1 -2 0

Input

-1

16

With Padding

Output

Kernel

-1 1 2

1 1 0

-1 -2 0

0 0 0 0 0 0 0

0 1 2 0 3 1 0

0 1 0 0 2 2 0

0 2 1 2 1 1 0

0 0 0 1 0 0 0

0 1 2 1 1 1 0

0 0 0 0 0 0 0

Input

17

Convolution Settings

Stride

 The ”step size” as the kernel moves across the image

 Can be different for vertical and horizontal steps (but usually is the same value)

 When stride is greater than 1, it scales down the output dimension

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

-2 3

0

18

Stride 2 Example—No Padding

Input

Output

Kernel

-1 1 2

1 1 0

-1 -2 0

19

Stride 2 Example—with Padding

OutputKernel

0 0 0 0 0 0 0

0 1 2 0 3 1 0

0 1 0 0 2 2 0

0 2 1 2 1 1 0

0 0 0 1 0 0 0

0 1 2 1 1 1 0

0 0 0 0 0 0 0

Input

-1 1 2

1 1 0

-1 -2 0

-1 2

3

20

Convolutional Settings—Depth

 In images, we often have multiple numbers associated with each pixel location.

 These numbers are referred to as “channels”

– RGB image—3 channels

– CMYK—4 channels

 The number of channels is referred to as the “depth”

 So the kernel itself will have a “depth” the same size as the number of input channels

 Example: a 5x5 kernel on an RGB image

– There will be 5x5x3 = 75 weights

21

Convolutional Settings—Depth

 The output from the layer will also have a depth

 The networks typically train many different kernels

 Each kernel outputs a single number at each pixel location

 So if there are 10 kernels in a layer, the output of that layer will have depth 10.

22

Pooling

 Idea: Reduce the image size by mapping a patch of pixels to a single value.

 Shrinks the dimensions of the image.

 Does not have parameters, though there are different types of pooling operations.

8 5

1 4

23

Pooling: Max-pool

 For each distinct patch, represent it by the maximum

 2x2 maxpool shown below

maxpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

2 1.5

.25 1.5

24

Pooling: Average-pool

 For each distinct patch, represent it by the average

 2x2 avgpool shown below

avgpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

