

2

Motivation—Image Data

 So far, the structure of our neural network treats all inputs interchangeably.

 No relationships between the individual inputs

 Just an ordered set of variables

 We want to incorporate domain knowledge into the architecture of a Neural Network.

3

Motivation

Image data has important structures, such as;

 ”Topology” of pixels

 Translation invariance

 Issues of lighting and contrast

 Knowledge of human visual system

 Nearby pixels tend to have similar values

 Edges and shapes

 Scale Invariance—objects may appear at different sizes in the image.

4

Motivation—Image Data

 Fully connected would require a vast number of parameters

 MNIST images are small (32 x 32 pixels) and in grayscale

 Color images are more typically at least (200 x 200) pixels x 3 color channels (RGB) =
120,000 values.

 A single fully connected layer would require (200x200x3)2 = 14,400,000,000 weights!

 Variance (in terms of bias-variance) would be too high

 So we introduce “bias” by structuring the network to look for certain kinds of patterns

5

Motivation

 Features need to be “built up”

 Edges -> shapes -> relations between shapes

 Textures

 Cat = two eyes in certain relation to one another + cat fur texture.

 Eyes = dark circle (pupil) inside another circle.

 Circle = particular combination of edge detectors.

 Fur = edges in certain pattern.

6

Kernels

 A kernel is a grid of weights “overlaid” on image, centered on one pixel

 Each weight multiplied with pixel underneath it

 Output over the centered pixel is 𝑝=1
𝑃 𝑊𝑝 ⋅ 𝑝𝑖𝑥𝑒𝑙𝑝

 Used for traditional image processing techniques:

– Blur

– Sharpen

– Edge detection

– Emboss

7

Kernel: 3x3 Example

Input OutputKernel

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

8

Kernel: 3x3 Example

Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

2

9

Kernel: 3x3 Example

Input OutputKernel

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

10

Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line
Detector Corner Detector

Horizontal Line
Detector

-1 1 -1

-1 1 -1

-1 1 -1

-1 -1 -1

1 1 1

-1 -1 -1

-1 -1 -1

-1 1 1

-1 1 1

11

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

 Let the Neural Network learn which kernels are most useful

 Use same set of kernels across entire image (translation invariance)

 Reduces number of parameters and “variance” (from bias-variance point of view)

12

Convolutions

13

Convolution Settings—Grid Size

Grid Size (Height and Width):

 The number of pixels a kernel “sees” at once

 Typically use odd numbers so that there is a “center” pixel

 Kernel does not need to be square

Height: 3, Width: 3 Height: 3, Width: 1Height: 1, Width: 3

14

Convolution Settings—Padding

Padding

 Using Kernels directly, there will be an “edge effect”

 Pixels near the edge will not be used as “center pixels” since there are not enough
surrounding pixels

 Padding adds extra pixels around the frame

 So every pixel of the original image will be a center pixel as the kernel moves
across the image

 Added pixels are typically of value zero (zero-padding)

-2

15

Without Padding

OutputKernel

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

-1 1 2

1 1 0

-1 -2 0

Input

-1

16

With Padding

Output

Kernel

-1 1 2

1 1 0

-1 -2 0

0 0 0 0 0 0 0

0 1 2 0 3 1 0

0 1 0 0 2 2 0

0 2 1 2 1 1 0

0 0 0 1 0 0 0

0 1 2 1 1 1 0

0 0 0 0 0 0 0

Input

17

Convolution Settings

Stride

 The ”step size” as the kernel moves across the image

 Can be different for vertical and horizontal steps (but usually is the same value)

 When stride is greater than 1, it scales down the output dimension

1 2 0 3 1

1 0 0 2 2

2 1 2 1 1

0 0 1 0 0

1 2 1 1 1

-2 3

0

18

Stride 2 Example—No Padding

Input

Output

Kernel

-1 1 2

1 1 0

-1 -2 0

19

Stride 2 Example—with Padding

OutputKernel

0 0 0 0 0 0 0

0 1 2 0 3 1 0

0 1 0 0 2 2 0

0 2 1 2 1 1 0

0 0 0 1 0 0 0

0 1 2 1 1 1 0

0 0 0 0 0 0 0

Input

-1 1 2

1 1 0

-1 -2 0

-1 2

3

20

Convolutional Settings—Depth

 In images, we often have multiple numbers associated with each pixel location.

 These numbers are referred to as “channels”

– RGB image—3 channels

– CMYK—4 channels

 The number of channels is referred to as the “depth”

 So the kernel itself will have a “depth” the same size as the number of input channels

 Example: a 5x5 kernel on an RGB image

– There will be 5x5x3 = 75 weights

21

Convolutional Settings—Depth

 The output from the layer will also have a depth

 The networks typically train many different kernels

 Each kernel outputs a single number at each pixel location

 So if there are 10 kernels in a layer, the output of that layer will have depth 10.

22

Pooling

 Idea: Reduce the image size by mapping a patch of pixels to a single value.

 Shrinks the dimensions of the image.

 Does not have parameters, though there are different types of pooling operations.

8 5

1 4

23

Pooling: Max-pool

 For each distinct patch, represent it by the maximum

 2x2 maxpool shown below

maxpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

2 1.5

.25 1.5

24

Pooling: Average-pool

 For each distinct patch, represent it by the average

 2x2 avgpool shown below

avgpool

2 1 0 -1

-3 8 2 5

1 -1 3 4

0 1 1 -2

