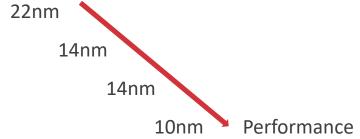
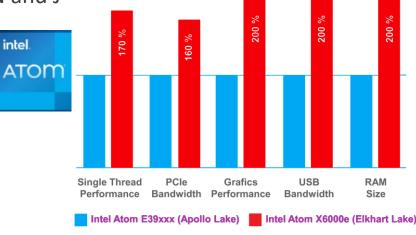
Partner Presentation


Intel Atom® x6000E Series and Intel® Pentium® and Celeron® Nand J Series processors (code named Elkhart Lake)

Presented By: Henri Parmentier-ADLINK Technology

the next generation of IoT edge devices More CPU power for low power devices



Featuring the latest *Intel Atom*® x6000E Series and Intel® Pentium® and Celeron® N and J Elkhart Lake) processor generation, Adlink SMARC

modules offer more CPU power for low-power applications.

📤 ADLINK

The new low-power Intel Atom processors offer a significant performance boost of up to 70 % single thread performance over previous Atom series based on the Apollo Lake microarchitecture

What AIoT applications need today is a low-power, high-performance processor technology, real-time operation, real-time connectivity, and real-time hypervisor technologies.

New Intel Atom® x6000E Series and Intel® Pentium® and Celeron® N and J Series processors (code named Elkhart Lake)

Increased graphics speed

The new Adlink CoM's based on the *Intel Atom*® x6000E Series and Intel® Pentium® and Celeron® N and J Series *processors* (code named Elkhart Lake) silicon offer impressive graphics with twice the speed for up to 3x 4k @ 60fps and 10-bit color depth.

This increase in graphics performance is made by integrating the Intel[®] 11th generation graphics Intel[®] Core[™] unit, which had already been built into the Intel[®] 10th generation Core [™] processors (code name Ice Lake).

The GPU is located on the CPU die and benefits from the optimizations of the 10nm manufacturing technology.

The performance increase comes from the number of integrated Execution Units (EUs), of which are up to 32 units.

The graphics performance is therefore doubled simply because of the higher efficiency and increased number of EUs

SubSlice			SubSlice		SubSlice		SubSlice		
I\$ & thread dispatch		I\$ & thread dispatch		I\$ & thread dispatch		I\$ & thread dispatch			
E	U	EU	EU	EU	EU	EU	EU	EU	
Е	U	EU	EU	EU	EU	EU	EU	EU	
EU		EU	EU	EU	EU	EU	EU	EU	
EU		EU	EU	EU	EU	EU	EU	EU	
Sampler		SLM	Sampler	SLM	Sampler	SLM	Sampler	SLM	
Tex\$			Tex\$		Tex\$		Tex\$		
Media Sampler		Dataport (LD/ST)	Media Sampler	Dataport [LD/ST]	Media Sampler	Dataport [LD/ST]	Media Sampler	Dataport (LD/ST)	
Raster									
Ĕ	HiZ/Depth								
Slice Common		Pixel Dispatch							
Sli	Pixel Backend								
L3\$									

New Intel Atom® x6000E Series and Intel® Pentium® and Celeron® N and J Series processors (code named Elkhart Lake)

Realtime via 2.5G Ethernet

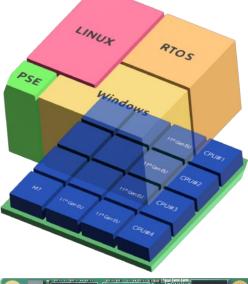
In industrial real-time applications, based on VxWorks and real-time Linux, are using *Intel*[®] Time Coordinated Computing (*Intel*[®] *TCC*) / *Intel*[®] Time-Sensitive Networking (*Intel*[®] TSN), and RTS (Real-TimeSystems) hypervisor support.

Intel® Time-Sensitive Networking (*Intel*® TSN), enables time sensitive applications over IP in hard real-time.

Adlink's new Atom processor-based modules offer integrated MACs that support TSN over 2.5 GbE. with real-time control.

Customers who want to integrate *Intel*® Time-Sensitive Networking (*Intel*® TSN), into their applications can therefore benefit directly from the application-ready solutions already available.

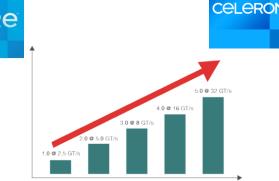
Intel® Time Coordinated Computing (Intel® TCC) orchestrates real-time Intel IP based communication also towards the I/O's to


reduce latency and minimize jitter in synchronous processes. It can be adjusted via the *Intel*® Time Coordinated Computing (*Intel*® *TCC*) Software Toolkit. This can be useful for real-time applications in the transportation sector

where the processor-integrated CAN bus needs to be integrated.

intel. CELERON

New Intel Atom® x6000E Series and Intel® Pentium® and Celeron® N and J Series processors (code named Elkhart Lake)

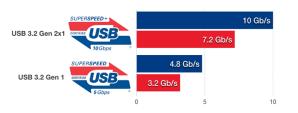

Higher data throughput

Higher data throughput to peripherals will also be a key benefit of the new Intel[®] Core [™] processors.

PCIe Gen3 is now available in a low-power processors, which means that the data rate has nearly doubled to a maximum of 32 Gigabyte/s compared to PCIe Gen2 as supported by Apollo Lake.

Another new feature is USB 3.1 Gen2 support, which offers a significant performance increase compared to USB 3.1 Gen1.

At up to 10 GBit, this enables twice as fast data transfers compared to USB 3.1 Gen1, opening the doors for uncompressed UHD video over USB

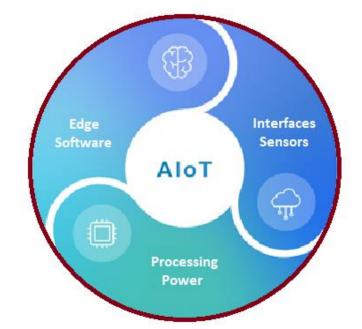

intel

intel

intel

ATOM

PENTIUN



More CPU power at the Edge

With ever increasing demand for processing power combined with a rich interface set the new New *Intel Atom*® x6000E Series and Intel® Pentium® and Celeron® N and J Series *processors* (code named Elkhart Lake)

Embedded processors are the perfect match for edge located devices that demands besides robust processing power a very low energy footprint

What AIoT applications need is a low-power, high-performance processor technology, real-time operation, real-time connectivity, and real-time hypervisor technologies.

Leading **EDGE COMPUTING**

intel

intel.

intel

ATOM

PENTIUM

CELERON

- LEC-EL6413-4G-32G-CT SoM
- Dual RJ45 ethernet
- 2x USB 3.1, 2x USB2.0
- HDMI 2.0a / dual LVDS
- 40 pin RPI compatible expansion header
- 40 pin additional expansion header
- 2x M.2 expansion slots
- Micro SD card reader, SIM card reader
- HDA Audio interface board
- Low profile heat-sink
- 19vDC power adapter US/EU plug

Get your development kit now!

- Online sales
- Online documentation
- Online support
- Online carrier designer (coming soon)
- Online R2R system images

I-Pi SMARC Elkhart Lake

Development kit Software

Main supported OS's on IPI.WIKI

- Ubuntu 22.04 LTS
- Celadon Android 10 x86
- Yocto Project Hardknott
- Microsoft Windows 10

Runtime image

Sourcecode

Runtime image

Sourcecode

Runtime image 🕢

Sourcecode

Runtime image

Sourcecode (X)

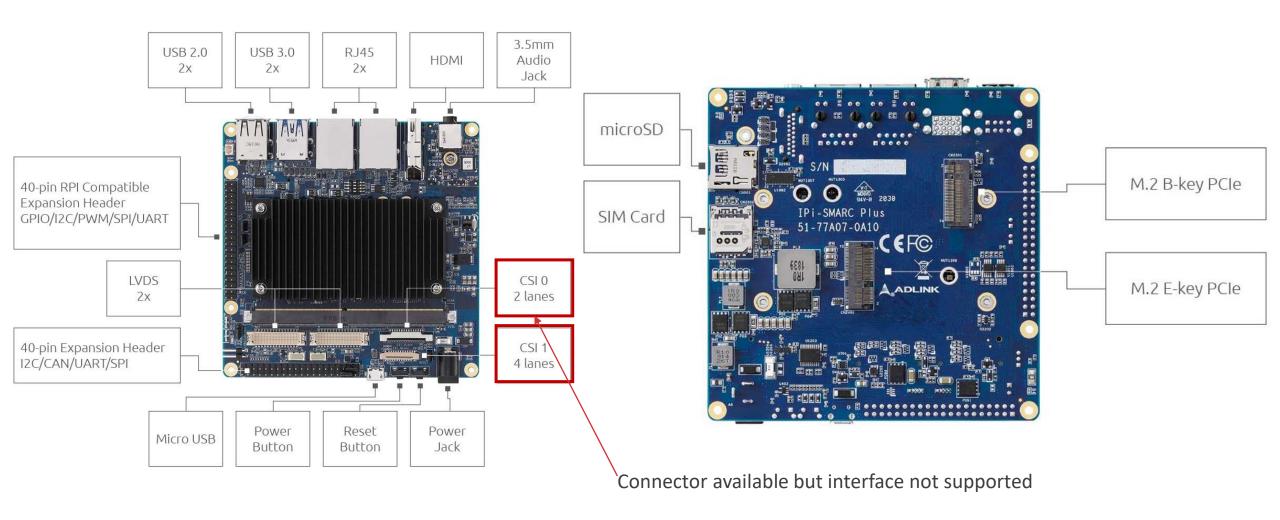
intel ATOM

SoM quick specs

core

- SMARC rev. 2.1 compliant
- Intel Atom® x6000E Series and Intel® Pentium® and Celeron® N and J Series processors (code named Elkhart Lake) 2/4 core
- Intel® 11th graphics Intel® Core[™] (up to 32 EU's)
- Dual 2.5 Gbit ethernet (optional *Intel*® Time-Sensitive Networking (Intel® TSN) SKU's)
- LPDDR4 up to 16GB
- eMMC up to 128GB
- FUSA SKU's available
- TPM 2.0 (optional)
- Crypto chip (optional)
- HDMI / LVDS / DP++
- PCIe Gen3, SATA Gen3, USB 3.2, USB2.0
- 4x UART, 2x CANbus, 2x SPI, 4x I2C, 14x GPIO

15 years availability



intel

FUSA = functional safety

Carrier board user interfaces

Disclaimer

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

Other names and brands may be claimed as the property of others.